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1. Introduction

Quantum field theory in curved spacetime has proved to be a rich field exhibiting many

subtle and counter-intuitive phenomena. The most famous, of course, is the prediction of

Hawking radiation from black holes [1], which has forced a critical analysis of unitarity in

spacetimes with horizons. More recently, the insights associated with holography [2, 3] have

led to a re-appraisal of the rôle of locality at a fundamental level. Another remarkable, but

less well-known, phenomenon discovered during the early investigations of QFT in curved

spacetime is the apparent superluminal propagation of photons due to vacuum polarization
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in QED. This clearly raises the question of whether causality may be violated by quantum

effects in curved spacetime.

The original result, due to Drummond and Hathrell [4], was obtained by constructing

the effective action for QED in a curved background and shows that the low-frequency

limit of the phase velocity vph(ω) = c/n(ω), where n(ω) is the refractive index, can exceed

the fundamental speed-of-light constant c. This is not immediately paradoxical1 since the

‘speed of light’ relevant for causality is not vph(0) but the wavefront velocity, which can

be identified with the high-frequency limit vph(∞) [12]. In order to settle the question

of causality, it is therefore necessary to go beyond the low-energy effective action and

show explicitly that n(∞) = 1. However, a serious problem then arises because of the

Kramers-Kronig dispersion relation [13 – 15], which is proved in Minkowski spacetime on the

basis of apparently fundamental axioms, especially micro-causality, together with standard

analyticity properties of QFT amplitudes. This states:

n(0) − n(∞) =
2

π

∫ ∞

0
dω Imn(ω) (Minkowski) (1.1)

Since unitarity, in the form of the optical theorem, normally implies that Imn(ω) is positive,

a superluminal n(0) < 1 would seem to imply a superluminal wavefront velocity, n(∞) < 1,

with the associated violation of causality.

The resolution of this apparent paradox was found in our recent papers [16, 17]. We

showed there that generic geometrical properties of null geodesics in curved spacetime imply

a novel analytic structure for the refractive index which invalidates the Kramers-Kronig

relation, at least in the form (1.1). The complete frequency dependence of the refractive

index was found in simple examples and it was shown explicitly how a superluminal n(0)

is reconciled with n(∞) = 1, ensuring causality.

An important implication of this result is that the conventional assumptions about the

analytic structure of amplitudes in QFT, which underpin the whole of S-matrix theory and

dispersion relations, have to be reassessed in curved spacetime. Because of the intimate

relation of analyticity and causality, this is key issue both for QFT in curved spacetime

and, most likely, for quantum gravity itself. It also highlights the danger in theories

involving gravity of relying on identities and intuition derived from conventional dispersion

relations to extrapolate from low-energy effective field theories to their UV completions.

In particular, the occurrence of ‘superluminal’ behaviour in a low-energy theory does not

necessarily mean that such theories do not have consistent, causal UV completions, either

in QFT or string theory [18 – 21].

The centrepiece of the present paper is the derivation of a formula for the full frequency

dependence of the refractive index for QED in an arbitrary curved spacetime expressed en-

tirely geometrically, specifically in terms of the Van Vleck-Morette (VVM) matrix in the

Penrose limit [22 – 24]. The calculation uses conventional QED Feynman diagram methods

with the heat kernel/proper time formulation of the propagators, rather than the world-

line method used in our earlier papers. This allows us to retain the critical insight of the

1For a review of the issues involved in reconciling superluminal propagation with causality for QED in

curved spacetime, see refs. [5 – 8]. Related work on causality can be found, e.g., in refs. [9 – 11].
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worldline approach in motivating the importance of the Penrose limit, while strengthening

the contact with the well-developed differential geometry of null geodesic congruences in

general relativity.

This geometry plays a central rôle here both in the derivation of our key formula for the

refractive index and in the interpretation of its analytic structure. In particular, the idea

of the Penrose limit is vital in establishing the generality of our results. The fundamental

insight provided by the worldline analysis is that to leading order in Rλ2
c (where R is a

typical curvature and λc = 1/m, the Compton wavelength of the electron, sets the quantum

scale), the one-loop corrections to photon propagation are governed by fluctuations around

the null geodesic describing the classical photon trajectory. It is precisely this geometry of

geodesic deviation in the original curved spacetime that is encoded in the Penrose plane-

wave limit. This also explains why the final result for the refractive index can be expressed

purely in terms of the VVM matrix since, as we explore here in some detail, this is in turn

determined by the Jacobi fields characterizing geodesic deviation [25 – 27].

A crucial feature of the geometry of null geodesic congruences is the occurrence of con-

jugate points, i.e. two points on a null geodesic which can be joined by an infinitesimal defor-

mation of the original geodesic [25, 27]. Their occurrence is generic given the validity of the

null energy condition, which is an important assumption in most theorems involving causal-

ity, horizons and singularities in general relativity. The existence of conjugate points implies

singularities at the corresponding points in the VVM matrix. Translated into the quantum

field theory, these imply singularities in the refractive index in the complex ω-plane — in

particular, n(ω) must be defined on a physical sheet with cuts running on the real axis

from 0 to ±∞. This novel analytic structure has important consequences, most notably

the loss of the fundamental S-matrix property of real analyticity for the refractive index,

i.e. n(ω∗) = n(ω)∗, which is assumed in the derivation of the Kramers-Kronig relation (1.1).

The relation with causality means that analyticity is a key property of QFT amplitudes, so

we must show how, despite the violation of the Kramers-Kronig relation, the new analytic

structure of the refractive index is reconciled with, and indeed essential for, causality.

It is important to emphasize that the essential physics underlying this discussion is

much more general than the specific application to the refractive index in QED. It shows

how the geometry of curved spacetime can modify the analytic structure of Green functions

and scattering amplitudes in quantum field theory in a quite radical way. This is sure to

have important physical consequences which we have only just begun to explore. Certainly,

the implications for S-matrix theory and dispersion relations appear to be far-reaching.

Of course, a full discussion of causality, and micro-causality, must be framed more

generally in terms of the Green functions of the theory. In this paper, we explicitly construct

the one-loop corrected Green functions for QED in the Penrose plane-wave spacetime, which

is sufficient to address the issues of causality in photon propagation. The full range of Green

functions — Feynman, Wightman, retarded and advanced, commutator (Pauli-Jordan or

Schwinger)—is found and they are shown to exhibit the expected good causality properties.

In particular, the retarded (advanced) Green functions are shown to have support only on

or inside the forward (backward) light cone. This confirms that, even at one-loop, the

commutator function vanishes outside the light cone, which is the conventional quantum

– 3 –
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field theoretic definition of micro-causality.

The paper is organized as follows. We begin with a review of the classical theory of

wave propagation in curved spacetime in the eikonal approximation. We then summarize

the low-energy effective field theory, extending the Drummond-Hathrell result to scalar

QED.2 Our main result is presented in section 4, where we calculate the one-loop vacuum

polarization in the Penrose plane-wave limit and derive the fundamental formula for the

refractive index in terms of the VVM matrix. Section 5 reviews the geometry of geodesic

deviation and a number of important identities relating the VVM matrix, geodesic interval

and Jacobi fields are derived. The Raychoudhuri equations are used to demonstrate the

generic nature of conjugate points.

The analytic structure of the refractive index is studied in section 6. The argument

leading from the existence of singularities in the VVM matrix to the definition of the physi-

cal sheet for the refractive index in the complex ω-plane is explored and the consequences for

the Kramers-Kronig relation and causality are carefully discussed. The explicit construc-

tion of the retarded, advanced and commutator Green functions at one-loop, demonstrating

that they have the required causal properties, is presented in section 9.

These formal results are illustrated in sections 7 and 8 in a number of examples, demon-

strating explicitly the predicted relation of the geometry with analyticity and causality. The

cases of conformally flat and Ricci flat symmetric plane waves, and also weak gravitational

waves, are calculated in detail, with the latter two exhibiting gravitational birefringence.

Remarkably, we also find that the refractive index may develop a negative imaginary part,

contrary to the conventional flat-spacetime expectation based on unitarity and the optical

theorem. Although the physical origin of this effect remains to be fully understood, it cor-

responds to a quantum mechanical amplification of the electromagnetic wave as it passes

through the curved background spacetime, over and above the geometric effects of focusing

or defocusing, apparently due to the emission of photons induced by the interaction with

the background field. Finally, our conclusions are summarized in section 10.

2. Classical photon propagation in curved spacetime

The classical propagation of photons in curved spacetime is governed by the covariant

Maxwell equation,

∇µF
µν = 0 , Fµν = ∇µAν −∇νAµ . (2.1)

In a general background spacetime, it is not possible to solve these equations exactly.

However, we will work in the eikonal, or WKB, approximation which is valid when the

frequency is much greater than the scale over which the curvature varies, ω ≫
√
R. (Here,

R is a measure of the curvature scale, for instance a typical element of the Riemann tensor.)

In this case, we can write the electromagnetic field in the form

Aµ(x) = εµ(x)e−iΘ(x) , (2.2)

2The case of spinor QED is similar in terms of physics to the results presented here. However, the

formalism requires further technical developments and will be presented separately.

– 4 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
1

where the eikonal phase Θ is O(ω) and εµ is O(ω0). Substituting into Maxwell’s equation,

and expanding in powers of 1/ω, we find the the leading and next-to-leading order terms are

∇µF
µν =

[

− ∂Θ · ∂Θεν + 2i∂Θ · ∇ εν + iεν∇ · ∂Θ + · · ·
]

e−iΘ . (2.3)

The leading order term yields the eikonal equation

∂Θ · ∂Θ = 0 ; (2.4)

so the gradient kµ = ∂µΘ is a null vector field. This vector field defines a null congruence,

that is a family of null geodesics whose tangent vectors are identified with the vector field

kµ. This vector can also be identified with the 4-momentum of photons: in this sense the

eikonal approximation is the limit of classical ray optics.

It is convenient to introduce a set of coordinates (u, V, Y a), a = 1, 2, the Rosen coordi-

nates, that are specifically adapted to the null congruence: u is the affine parameter along

the geodesics; V is the associated null coordinate so that

Θ = ωV ; (2.5)

while Y a are two orthogonal space-like coordinates. As explained in ref. [23], the full metric

gµν can always be brought into the form

ds2 = −2du dV + C(u, V, Y a)dV 2 + 2Ca(u, V, Y
b)dY a dV + Cab(u, V, Y

c)dY a dY b . (2.6)

The null congruence has a simple description as the set of curves (u, V, Y a) for fixed values

of the transverse coordinates (V, Y a). It should not be surprising that the Rosen coordi-

nates are singular at the caustics of the congruence, that is points where members of the

congruence intersect.

The next-to-leading order in the eikonal approximation (2.3) gives an equation for the

evolution of εµ along a null geodesic:

k · ∇ εµ = −1

2
εµ∇ · k . (2.7)

It is useful to make the decomposition εµ = Aε̂µ, where ε̂µ is the unit normalized polariza-

tion vector and A represents the amplitude. eq.(2.7) is then equivalent to the two equations

k · ∇ ε̂µ = 0 ,

k · ∇ logA = −1

2
∇ · k .

(2.8)

At this point, we fix the gauge by choosing Au = 0 along with the condition ∇µA
µ = 0.

The latter implies the transverse condition k · ε̂ = 0 whilst the former means that we set

the component of ε̂ along k to zero. Hence, there are two independent solutions for the

polarization vector ε̂(i), i = 1, 2, which we normalize as ε̂(i) · ε̂(j) = δij . These span the

directions associated to the space-like coordinates Y a. The second of eqs.(2.8) relates the

change of the amplitude along a null geodesic to the expansion θ̂ = ∇µk
µ, one of the optical

scalars appearing in the Raychoudhuri equations (see section 5).
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Later, when we calculate the one-loop correction to the mass-shell condition we shall

have to take the photon wavefunctions off-shell at tree level. This can be done conveniently

by modifying the eikonal phase to

Θ = ω
(

V − ϑij(u;ω)
)

. (2.9)

We have indicated the polarization dependence explicitly, in which case the phase can be

thought of as a 2 × 2 matrix with

Aµ
(i) = εµ(j)e

−iω(V −ϑij(u;ω)) , (2.10)

with an implicit sum over j = 1, 2, in which case,

∇µF
µν
(i) = 2ω2 ∂ϑij(u;ω)

∂u
εν(j)e

−iωV , (2.11)

to leading order in the eikonal approximation. If ϑij(u;ω) is perturbatively small then the

local phase velocity matrix is c(δij − ∂ϑij(u;ω)/∂u), which gives a matrix of refractive in-

dices

n(u;ω) = 1 + 2
∂ϑ(u;ω)

∂u
. (2.12)

Notice that in order for the correction to remain perturbatively small, the refractive index

should strictly-speaking approach 1 in the infinite past and future. In other words the

spacetime should become flat in these limits.

3. Effective action and low-frequency propagation

The low-frequency limit of the phase velocity, which exhibits the superluminal effect, can be

found by considering the modifications to the Maxwell equation following from the leading

terms in a derivative expansion of the one-loop effective action. This was the approach

taken in the original work of Drummond and Hathrell [4].

The generalization of the QED effective action to all orders in derivatives was subse-

quently given in ref. [28, 29], extracting the relevant “RFF” terms from the general heat

kernel results of Barvinsky et al. [30]. (See also refs. [31 – 34] for related heat kernel re-

sults.) Although these results were given for spinor QED, it is straightforward to find the

corresponding results for scalar QED from the formulae in [28]. In particular, this allows

us to write the leading-order effective action for scalar QED and deduce the corresponding

low-frequency phase velocity, providing a useful consistency check on our general result for

the full refractive index in scalar QED.

The relevant terms in the effective action to one loop are

Γ =

∫

d4x
√
g

[

− 1

4
FµνF

µν + aRFµνF
µν + bRµνF

µλF ν
λ

+ cRµνλρF
µνF λρ + d∇µF

µλ∇νF
ν
λ + · · ·

] (3.1)
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where, in the notation of [28],

a = − αN

8πm2
h1(0) ,

b =
αN

8πm2

(

h2(0) − 2h′0(0)
)

,

c = − αN

8πm2

(

h3(0) + h′0(0)
)

,

d =
αN

8πm2
2h′0(0) .

(3.2)

For scalar QED N = 1 while for spinor QED N = 22 = 4. Notice that we have

used the identity
∫

d4x
√
gFµν�Fµν =

∫

d4x
√
g
[

2∇µF
µλ∇νF

ν
λ − 2RµνF

µλF ν
λ −RµνλρF

µνF λρ
]

(3.3)

to write the action in the form (3.1).

The all-orders effective action derived in [28] is expressed in terms of RFF -type oper-

ators acted on by functions of the Laplacian given in terms of the form factors f(�) and

F (�1,�2,�3) computed in ref. [30]. In particular, the quantities h(0) can be expressed in

terms of this collection of form factors as follows:

h′0(0) = −1

2
f ′4(0) + f ′5(0) ,

h1(0) =
1

8
F1(0) − 1

12
F3(0) ,

h2(0) = F̃8(0) ,

h3(0) = −1

2
F3(0) + F̃0(0) .

(3.4)

For spinor QED [28],

f ′4(0) = − 1

12
, f ′5(0) = − 1

120
, F1(0) =

1

6
,

F̃8(0) = − 1

180
, F3(0) =

1

12
, F̃0(0) =

1

72
. (3.5)

So the coefficients are

a = − α

144πm2
, b = − 13α

360πm2
, c = − α

360πm2
, d =

α

30πm2
. (3.6)

reproducing the original Drummond-Hathrell effective action [4].

For scalar QED, we can readily see that f4 = 0, F1 = 0 and F3 = 0, while the other

quantities are as above, so the coefficients in this case are

a = 0 , b =
α

720πm2
, c = − α

1440πm2
, d = − α

480πm2
. (3.7)

To relate the effective action to the calculation of the refractive index we write the

modified Maxwell equation corresponding to (3.1) and substitute the eikonal ansatz (2.10).

This gives the general result for the low-frequency limit of the refractive index [4, 7]

nij(x; 0) = δij + 2bRuu(x)δij + 8cRuiuj(x) . (3.8)

– 7 –
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Notice that the refractive index, and the phase velocity, is a local quantity in spacetime.

Although we call this the “low-frequency” limit, we are still working in the eikonal approx-

imation. Low frequency refers to the fact that the dimensionless ratio ω
√
R/m2 is small.

With this in mind, for spinor QED we find

nij(x; 0) = δij −
α

180πm2

(

13Ruu(x)δij + 4Ruiuj(x)
)

, (3.9)

while for scalar QED,

nij(x; 0) = δij +
α

360πm2

(

Ruu(x)δij − 2Ruiuj(x)
)

. (3.10)

Notice that the opposite sign of the b coefficient means that scalars and spinors respond

oppositely to the Ricci curvature. Since the null energy condition requires Ruu(x) > 0,

this means the low-frequency phase velocity is superluminal for spinors in a conformally

flat background, but subluminal for scalars.

4. Vacuum polarization and the refractive index

The propagation of photons at the quantum level is determined by the terms in the effective

action quadratic in Aµ(x). This is the vacuum polarization:

∫

√

g(x) d4x
√

g(x′)d4x′Aµ(x)Πµν(x, x′)Aν(x′) . (4.1)

where g(x) = det[−gµν(x)]. At the one-loop level, the on-shell condition for the photon

wavefunction is therefore

∇νF
ν
µ = −4

∫

√

g(x′) d4x′ Π1-loop
µν (x, x′)Aν(x′) . (4.2)

To find the refractive index at one-loop order, we substitute the tree-level form for the

photon wavefunction inside the integral and take the first term off-shell to give an equation

for the unknown set of functions ϑij(u;ω) in eq. (2.11).

Notice, however, that even the effective action computed to all orders in the derivative

expansion [28] does not entirely capture the essential physics of high-frequency propagation

since, as we have shown in ref. [16, 17] (see also [29, 6]), the high-frequency dependence of

the refractive index is non-perturbative in the parameter ω2R/m4. The analysis of vacuum

polarization given here automatically includes this crucial non-perturbative behaviour.

4.1 Vacuum polarization and the Penrose limit

The complete one-loop vacuum polarization Π1-loop
µν (x, x′) receives contributions from two

Feynman diagrams, as illustrated in figure 1. This gives

Π1-loop
µν (x, x′) =e2gµνδ

(4)(x− x′)GF (x, x)

+ 2e2
[

∂µGF (x, x′)∂′νGF (x, x′) −GF (x, x′)∂µ∂
′
νGF (x, x′)

]

,
(4.3)

where GF (x, x′) is the Feynman propagator of the massive (scalar) electron.

– 8 –
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Figure 1: The two Feynman diagrams that contribute to the vacuum polarization to order α.

Figure 2: The Feynman propagator GF (x, x′) is expressed as a functional integral over paths

joining x′ to x. In the limit of weak curvature, R ≪ m2, the functional integral is dominated by a

stationary phase solution which is the geodesic joining x′ and x.

The Feynman propagator in a general background spacetime can be written in the

heat-kernel or “proper-time” formalism as

GF (x, x′) =

√

det∆µν(x, x′)
(

g(x)g(x′)
)1/4

∫ ∞

0

dT

(4πT )2
ie−im2T+ 1

2iT
σ(x,x′)Ω(x, x′|T ) , (4.4)

subject to the usual m2 → m2 − iǫ prescription. Here, σ(x, x′) is the geodesic interval

between the points x and x′:

σ(x, x′) =
1

2

∫ 1

0
dτ gµν(x)ẋµẋν , (4.5)

where xµ = xµ(τ) is the geodesic joining x = x(0) and x′ = x(1). The factor det∆µν(x, x′)

is the famous Van Vleck-Morette (VVM) determinant, where the matrix is

∆µν(x, x
′) =

∂2σ(x, x′)

∂xµ∂x′ν
. (4.6)

The geometric nature of the VVM matrix and its relation to geodesic deviation is explored

in detail in section 5.

This expression for the propagator has a nice interpretation in the worldline formalism,

in which the propagator between two points x and x′ is determined by a sum over worldlines

xµ(τ) that connect x = x(0) and x′ = x(T ) weighted by exp iS[x] where the action is

S[x] = −m2T +
1

4

∫ T

0
dτ gµν(x)ẋµẋν . (4.7)

Here, T is the worldline length of the loop which is an auxiliary parameter that must be

– 9 –
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integrated over. The expression (4.4) corresponds to the expansion of the resulting func-

tional integral around the stationary phase solution, which is simply the classical geodesic

that joins x and x′ as illustrated in figure 2. In particular, the classical geodesic has an

action S[x] = σ(x, x′)/(2T ) −m2T giving the exponential terms in (4.4). The VVM de-

terminant comes from integrating over the fluctuations around the geodesic to Gaussian

order while the term Ω(x, x′|T ) = 1 +
∑∞

n=1 an(x, x′)T n encodes all the higher non-linear

corrections. Notice that these terms are effectively an expansion in R/m2, so the form

for the propagator is useful in the limit of weak curvature compared with the Compton

wavelength of the electron. Of course, this is precisely the limit we are working in here.

The weak curvature limit R ≪ m2 leads to a considerable simplification as we now

explain. The terms in the exponent in the second term in (4.3) are of the form

exp

[

− im2T −
(

1

T1
+

1

T2

)

σ(x, x′)

2i
− iωV ′

]

. (4.8)

For later use, we find it convenient to change variables from T1 and T2 to T = T1 + T2 and

ξ = T1/T , so 0 ≤ ξ ≤ 1. Expressed the other way

T1 = Tξ , T2 = T (1 − ξ) . (4.9)

The Jacobian is
∫ ∞

0

dT1

T 2
1

dT2

T 2
2

=

∫ ∞

0

dT

T 3

∫ 1

0

dξ

[ξ(1 − ξ)]2
. (4.10)

In the limit R≪ m2 the integral over x′ is dominated by a stationary phase determined

by extremizing the exponent (4.8) with respect to x′:

− 1

2Tξ(1 − ξ)
∂′µσ(x, x′) + ω∂′µV

′ = 0 . (4.11)

Since ∂′µσ(x, x′) is the tangent vector at x′ of the geodesic passing through x′ and x, the

stationary phase solution corresponds to a geodesic with tangent vector ∝ ∂′µV ′. This

means that x and x′ must lie on one of the geodesics of the null congruence. If we choose

x to be the point (u, 0, 0, 0) then x′ must have Rosen coordinates (u′, 0, 0, 0). We call this

distinguished null geodesic γ. For these points, it follows that for any metric for which ∂V

is a Killing vector,

∂V ′σ(x, x′) = u− u′ ; (4.12)

so the V ′ component of (4.11) becomes

u′ − u

2Tξ(1 − ξ)
+ ω = 0 (4.13)

and hence

u′ = u− 2ωTξ(1 − ξ) . (4.14)

In the equivalent worldline picture, the stationary phase solution which dominates in

the limit R ≪ m2 describes a situation where the incoming photon decays to an electron

positron pair at the point u′ = u − 2ωTξ(1 − ξ) which propagate along the null geodesic
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Figure 3: The classical stationary phase solution where the photon travelling along the geodesic γ

decays to an electron-positron pair at x(u′) which both follow the geodesic γ and then re-combine

back into the photon at x(u) where u = u′ + 2ωTξ(1 − ξ).

Figure 4: The Penrose limit associated to the null geodesic γ is the limit of the full metric that

captures the tidal forces on nearby null geodesics.

γ to the point u and then combine into the photon again, as shown in figure 3. This was

a key step in the derivation of the refractive index in the worldline formalism which we

presented in ref. [17, 16].

In either formalism, the fluctuations around the stationary phase solution are governed

by the ratio RT which is effectively R/m2. In order to set up the expansion systematically

it is useful to make the following re-scaling of the coordinates

(u, V, Y a) −→ (u, TV,
√
TY a) . (4.15)

which implements an overall Weyl scaling while preserving the stationary phase solu-

tion (4.14). After these re-scalings, the geodesic interval (4.5) with metric (2.6) becomes

σ(x, x′) =
T

2

∫ 1

0
dτ
[

− 2u̇ V̇ + Cab(u, 0, 0)Ẏ
a Ẏ b

]

+ O(T 2) (4.16)

The leading order piece is precisely the Penrose limit around the null geodesic γ (V = Y a =

0). The Penrose limit is the limit of the full metric in a tubular neighbourhood of a null

geodesic, as illustrated in figure 4, defined in such a way that it captures the tidal forces

on the null geodesics that are infinitesimal deformations of γ. (This point of view will

be described more fully in section 5.) It follows that to leading order in the expansion in

R/m2, we can replace the metric by its Penrose limit around the null geodesic V = Y a = 0:

ds2 = −2du dV + Cab(u)dY
a dY b , (4.17)

where Cab(u) ≡ Cab(u, 0, 0). This defines a plane wave in Rosen coordinates.
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4.2 Geometry of the plane-wave metric

The fact that the leading-order contribution to the vacuum polarization for an arbitrary

curved spacetime depends only on its Penrose limit is a remarkable simplification. As

we show below, it allows the derivation of a strikingly elegant expression for the full fre-

quency dependence of the refractive index, given purely in terms of the VVM matrix.

First, we collect some geometrical properties of the plane wave metric in both Rosen and

Brinkmann coordinates.

The connection between the Rosen coordinates (u, V, Y a) and Brinkmann coordinates

(u, v, yi) involves a zweibein Ei
a(u), which ensures that the transverse space is flat in

Brinkmann coordinates. That is,3

Cab(u) = Ei
a(u)δijE

j
b(u) , (4.18)

Then, solving the null geodesic equation in the plane wave metric [16, 17] motivates the

following coordinate transformation:

yi = Ei
aY

a ,

v = V +
1

2

dEia

du
Ei

bY
aY b .

(4.19)

The inverse transformations are therefore

Y a = yiEi
a ,

V = v − 1

2
Ωijy

iyj ,
(4.20)

where Ωij = ∂uEiaEj
a plays an important rôle in the Brinkmann analysis. In particular,

the zweibein must be chosen in such a way that Ωij = Ωji. In these coordinates, the

Penrose limit (4.17) takes the familiar plane-wave form

ds2 = −2du dv − hij(u)y
i yj du2 + dyi dyi , (4.21)

where the quadratic form is

hij(u) = Riuju = −d
2Eia(u)

du2
Ej

a(u) , (4.22)

and we have the useful identity h = −∂uΩ − Ω2. Here, and in the following boldface

symbols are used to denote 2 × 2 matrices with Brinkmann transverse i, j indices.

The Brinkmann coordinates are more fundamental to the distinguished geodesic γ,

Y a = V = 0, than the Rosen coordinates, since they are the geodesic analogues of Riemann

normal coordinates known also as Fermi normal coordinates [24]. In addition, the Rosen

coordinates are not unique since there are always many inequivalent congruences of which

γ is a member. In the following, we find the Rosen coordinates to be the most efficient

3Note that the i index on Ei
a is raised and lowered with δij while the a index is raised and lowered with

Cab(u) and its inverse. Also note that in Rosen coordinates,
p

g(u) = detE.
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for performing the calculation while the final result is naturally expressed in terms of the

more fundamental Brinkmann coordinates.

The geodesic interval is particularly simple in Rosen coordinates:

σ(x, x′) = −(u− u′)(V − V ′) +
1

2
∆ab(u, u

′)(Y − Y ′)a(Y − Y ′)b (4.23)

where

∆ab(u, u
′) = (u− u′)

[
∫ u

u′

C−1(u′′)du′′
]−1

ab

. (4.24)

∆ab are therefore the transverse Rosen components of the full VVM matrix. The VVM

determinant itself reduces to a determinant over the two-dimensional transverse space

det ∆µν(x, x
′) = −det∆ab(u, u

′) . (4.25)

To prove this, we first take τ = (u′′ − u′)/(u − u′) in the definition (4.5) so that

σ(x, x′) =
u− u′

2

∫ u

u′

du′′
(

− 2V̇ + CabẎ
aẎ b

)

. (4.26)

The geodesic equation for the Y a(u) is simply

d

du
Cab(u)Ẏ

b(u) = 0 , (4.27)

with solution

Ẏ a(u) =
[

C−1(u)
]ab
ξb (4.28)

for constant ξb. Integrating this, and using the definition (4.24), we have

(Y − Y ′)a =

∫ u

u′

du′′
[

C−1(u′′)
]ab
ξb = (u− u′)

[

∆−1(u, u′)
]ab
ξb . (4.29)

Hence, the geodesic interval is

σ(x, x′) = −(u− u′)(V − V ′) +
u− u′

2
(Y − Y ′)aξa

= −(u− u′)(V − V ′) +
1

2
∆ab(u, u

′)(Y − Y ′)a(Y − Y ′)b
(4.30)

as claimed.

In addition, Ω(x, x′|T ) = 1 in a plane-wave background, which is a manifestation of the

fact that the propagator is WKB exact. This is entirely consistent with the fact that for

the original metric the non-leading terms in Ω(x, x′|T ) are suppressed in the limit m2 ≫ R.

The implication of this is that in a general background spacetime our analysis is valid in

the limits ω ≫
√
R and m2 ≫ R. However, for a plane wave spacetime, the results will

actually be exact for any R, m and ω.

The eikonal approximation (2.10) for the electromagnetic field Aµ(x) is similarly exact

for a plane wave spacetime. Moreover, all the quantities involved have a very simple

geometric interpretation [16, 17]. Specifically, the amplitude is

A(x) =
(

detEia(u)
)−1/2

(4.31)
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and the non-vanishing components of the polarization vector ε̂(i)µ are

ε̂(i)a(x) = Eia(u) (4.32)

The tree level contribution to the mass shell condition (4.2) at a point x = (u, 0, 0, 0), for

small ϑ, is then simply

∇νF(i)
ν
a(u) = ω2A(u)

[

nij(u;ω) − δij

]

Eja(u) . (4.33)

4.3 Refractive index

We now complete the calculation of the vacuum polarization and refractive index, working

from here onwards in a plane wave background. Returning to the expression (4.3) for the

vacuum polarization, we find that the first Feynman diagram in figure 1 gives the following

contribution to (4.2):
α

π
A(u)Eia(u)

∫ ∞

0

dT

T 2
ie−im2T , (4.34)

By itself, this contribution is divergent but we shall find that it cancels a divergence in the

second term.

The contribution to the on-shell condition (4.2) from the second Feynman diagram in

figure 1 is then

8e2
∫

√

g(x′)d4x′
[

∂µGF (x, x′)∂′νGF (x, x′)−GF (x, x′)∂µ∂
′
νGF (x, x′)

]

εν(i)e
−iωV (x′) . (4.35)

In Rosen coordinates, we take x = (u, 0, 0, 0) and x′ = (u′, V ′, Y ′a). What remains is to

integrate over x′µ. The integral over V ′ is trivial and leads to a delta function constraint

∫

dV ′ exp

[

(u′ − u)V ′

2iT ξ(1 − ξ)
− iωV ′

]

= 4πTξ(1 − ξ)δ
(

u′ − u+ 2ωTξ(1 − ξ)
)

(4.36)

which saturates the u′ integral. This simply enforces the condition (4.14), the stationary

phase solution becoming exact for the plane wave background.

Since εν(i) only has non-vanishing components in the Y a directions and the integrals

over the Y ′a are Gaussian, it follows that (4.35) is only non-vanishing if the derivatives ∂µ

lie in the directions ∂a. Using this fact, the Y ′a integrals are of the form

∫

d2Y ′ ∂

∂Y ′a
e

i
4Tξ

Y ′·∆(u,u′)·Y ′ ∂

∂Y ′b
e

i
4T (1−ξ)

Y ′·∆(u,u′)Y ′

=
πξ(1 − ξ)

2

∆ab(u, u
′)

√

det∆ab(u, u′)
. (4.37)

This is where the advantage of performing the calculation in Rosen coordinates is clearest,

since these coordinates automatically exhibit the simple form (4.23) for the transverse

sector of the geodesic interval. (The corresponding expression in Brinkmann coordinates

is given in section 5.) Noting that

∆ab(u, u
′)Ei

b(u′) = Ej
a(u)∆ij(u, u

′) (4.38)
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and the fact that
√

det ∆ab(u, u′)

g(u)

(

detEia(u
′)
)−1/2

=
(

detEia(u)
)−1/2

√

detEi
a(u)∆ab(u, u′)Ej

b(u′)

= A(u)
√

det∆ij(u, u′) ,

(4.39)

we find the contribution to the mass shell condition (4.2) is

−A(u)Ej
a(u)

α

π

∫ ∞

0

dT

T 2

∫ 1

0
dξ ie−im2T ∆ij(u, u

′)
√

det∆ij(u, u′)
∣

∣

∣

u′=u−2ωTξ(1−ξ)
. (4.40)

Summing over the two contributions to (4.3) gives the complete one-loop term in (4.2)

and since the tree-level contribution is (4.33), we can extract the matrix of refractive indices:

n(u;ω) =1− α

2πω2

∫ ∞−iǫ

0

dT

T 2
ie−im2T

×
∫ 1

0
dξ
[

1− ∆(u, u′)
√

det∆(u, u′)
]

u′=u−2ωTξ(1−ξ)

(4.41)

Here, and in the following, ∆ represents the 2 × 2 matrix ∆ij with Brinkmann coordi-

nate indices.

This is our principal result for the refractive index. It is remarkable that the full

frequency dependence of the refractive index/phase velocity for photons propagating in

an arbitrary background spacetime can be expressed in such a simple and elegant way.

The key insight, that the quantum effects on photon propagation are determined by the

geometry of geodesic fluctuations around the classical null trajectory and are therefore

entirely encoded in the plane-wave Penrose limit of the original spacetime, explains why

the final result should depend so simply on the VVM matrix only.

Notice that the result for the refractive index at a point x = x(u) only depends upon

data associated to the classical null geodesic x(u− t), 0 ≤ t ≤ ∞, i.e. on the portion in the

past relative to x. We can write

n(u;ω) = 1− α

2πω

∫ 1

0
dξ ξ(1 − ξ)F

(

u;
m2

2ωξ(1 − ξ)

)

, (4.42)

with

F(u; z) =

∫ ∞−iǫ

0

dt

t2
ie−izt

[

1 −∆
(

u, u− t
)

√

det∆
(

u, u− t
)

]

, (4.43)

where we changed variables from T to t = 2ωξ(1 − ξ)T . The result we have obtained is

strictly valid for ω real and positive. Also notice that the definition (4.43) has the form of

a Fourier Transform of a function which vanishes for t < 0.

We will show in section 6 that as a consequence of singularities in ∆ corresponding

to conjugate points on the null congruence, the integrand has branch-point singularities

on the real t axis and so the t integral must be defined by some prescription. The iǫ

prescription that we have chosen in (4.43) ensures that the refractive index becomes trivial

in the flat-space limit. The t integration contour is illustrated in figure 5.
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Figure 5: The integration contour in the t-plane that defines the physical values of the refractive

index for real positive ω. Crosses represent branch-point or pole singularities which generically lie

on the real axis but in some examples lie also on the imaginary axis.

The low frequency behaviour of the refractive index follows readily by expanding the

VVM matrix in powers of t, since the effective expansion parameter is ω2R/m4. Expanding

∆
(

u, u− t
)

→ 1 +

∞
∑

n=1

s
(n)(u)t2n , (4.44)

where s(n)(u) ∝ Rn, we identify the term linear in the curvature as

s
(1)
ij (u) = −1

6
Ruiuj(u) . (4.45)

Substituting this expansion into (4.42), we therefore find to leading order

nij(u;ω) = δij +
α

360πm2

(

Ruuδij − 2Ruiuj

)

+
R

m2
O
(

ω2R

m4

)

. (4.46)

in agreement with the result (3.10) derived from the effective action.

5. Geodesic deviation and the VVM determinant

The Van Vleck-Morette determinant plays a central rôle in determining the refractive in-

dex and its analytic structure. This is because the VVM matrix controls the geometry of

geodesic deviation. Since this is such an important part of our analysis, in this section we

present a detailed account of this geometry, mostly from the viewpoint of Brinkmann co-

ordinates.

We start with the definition. Fix two points x′ and x in spacetime and consider the

following functional integral
∫

[dx
√

g(x)]eiS[x] , (5.1)

where the action is

S[x] =
1

4

∫ 1

0
dτ gµν(x)ẋµẋν (5.2)
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and the function x(τ) has boundary conditions x(0) = x′ and x(1) = x. The VVM

determinant arises from integrating the fluctuations to Gaussian order around a stationary

phase solution of the equations of motion. These are precisely the geodesic equations. If

we denote by x̄(τ) a (usually unique) geodesic that passes through x′ = x̄(0) and x = x̄(1),

the equations for the fluctuations are

Dµ
νδx

ν(τ) = 0 , (5.3)

where Dµ
ν is the second order differential operator

Dµ
ν = δµ

ν
D2

Dτ2
+Rµ

σνλ ˙̄xσ ˙̄xλ . (5.4)

Here, D/Dτ are absolute derivatives along x̄(τ), i.e. Dxµ(τ)/Dτ = ∂τx
µ + Γµ(x̄)νσ ˙̄xνxσ.

The VVM determinant is defined as the functional determinant detDµ
ν . It is evaluated

directly in [35] (see also [36]) by discretizing the functional integral and then taking a

continuum limit to yield the finite determinant

detAµ
ν(1) , (5.5)

where Aµ
ν(τ) is a solution of the Jacobi equation

Dµ
νA

ν
σ(τ) = 0 , (5.6)

subject to the boundary conditions

Aµ
ν(0) = 0 ,

∂Aµ
ν(0)

∂τ
= δµ

ν . (5.7)

To understand this in more detail and connect to the previous definition of the VVM

determinant, we now specialize to Brinkmann coordinates and consider the tidal forces

on null geodesics that are infinitesimal deformations of the distinguished null geodesic γ.4

These nearby geodesics are described by the “Jacobi fields” in the neighbourhood of γ

which, given their interpretation as Fermi null coordinates, can simply be identified as the

transverse Brinkmann coordinates yi(u) of null geodesics in the plane wave metric (4.21).

Their evolution is described by the geodesic deviation equation, specializing (5.3) and

choosing u as the affine parameter:

d2yi(u)

du2
= −Ri

uju(u)yj(u) . (5.8)

The solution of eq.(5.8) determines the coordinates y(u) in terms of initial data y(u′)

and ẏ(u′) at a fixed point u′, i.e.

yi(u) = Bi
j(u, u

′)yj(u′) + Ai
j(u, u

′)ẏj(u′) . (5.9)

4It is important to realize that these nearby geodesics do not necessarily lift to geodesics of the full

metric: this is a global issue of integrability that is irrelevant to our discussion.

– 17 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
1

It follows immediately that the matrix functions A(u, u′) and B(u, u′), with elements

Aij(u, u
′) and Bij(u, u

′), satisfy the geodesic deviation equations

Ä + hA = 0 , B̈ + hB = 0 , (5.10)

where h has elements hij(u) = Riuju, with boundary conditions A(u′, u′) = 0,

∂uA(u, u′)|u=u′ = 1, B(u′, u′) = 1 and ∂uB(u, u′)|u=u′ = 0. Using the zweibein, it is

easy to see that these functions satisfy the consistency relation

Bij +AikΩ
k
j(u

′) = Eia(u)Ej
a(u′) . (5.11)

Two special choices of boundary conditions for yi(u) are of particular interest:

(i) yi(u′) = 0 ⇒ yi(u) = Ai
j(u, u

′)ẏj(u′) , (5.12)

with, as always, Aij = 0 and ∂uAij = δij at u = u′. This describes a “spray” of

geodesics [26] passing through a point y(u′) = 0 and determines the function Aij which, as

we show below, is related very simply to the inverse of the VVM matrix ∆ij. In addition,

as we prove below, A(u, u′) has the anti-symmetric property

A(u, u′) = −A(u′, u)⊤ . (5.13)

(ii) ẏi(u′) = 0 ⇒ yi(u) = Bi
j(u, u

′)yj(u′) , (5.14)

with Bij = δij and ∂uBij = 0 at u = u′. This is the choice [25] appropriate to a geodesic

congruence with neighbouring geodesics parallel at u′.

The geodesic deviation functions A and B determine the geodesic interval for the

plane wave in Brinkmann coordinates. Analogous to the Rosen expression (4.26), we have

σ(x, x′) = −u− u′

2

∫ u

u′

du′′
(

2v̇ + hij(u
′′)yiyj − ẏiẏi

)

= −(u− u′)
(

(v − v′) − 1

2

[

ẏiyi

]u

u′

)

,

(5.15)

using the geodesic equation ÿi + hi
jy

j = 0. Substituting (5.9) now gives

σ(x, x′) = −(u− u′)

(

(v − v′) + yi(u)A−1
ji (u, u′)yj(u′)

+
1

2
yi(u)A−1

ik (u′, u)Bk
j(u

′, u)yj(u)− 1

2
yi(u′)A−1

ik (u, u′)Bk
j(u, u

′)yj(u′)

)

.

(5.16)

The transverse Brinkmann components ∆ij of the VVM matrix, defined by

∆ij(u, u
′) =

∂2σ(x, x′)

∂yi(u)∂yj(u′)
(5.17)

and therefore

∆(u, u′) = (u− u′)
(

A
−1(u, u′)

)⊤
. (5.18)
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Yet another interpretation [26] of the VVM determinant is as the Jacobian for the

change of variables between specifying a geodesic by giving two points—x(u′) and x(u)—

through which it passes and giving one point and the tangent vector at that point: x(u′)

and ẋ(u′). Since we can think of kν(x, x′) = ∂σ(x, x′)/∂x′ν as the tangent vector at x′

of the geodesic that goes through the two points x′ and x, normalized so that the affine

parameter between x′ and x goes from 0 to 1, we see from (4.6) that

∆µ
ν(x, x′) = ∂µk

ν(x, x′) . (5.19)

With this normalization,

ki(u, u′) = (u− u′)ẏi(u′) (5.20)

and so from (5.12) we have the Jacobian matrix

∂kj(u, u
′)

∂yi(u)
= (u− u′)A−1

ji (u, u′) . (5.21)

The equivalence of the Rosen and Brinkmann expressions (4.23) and (5.16) for the

geodesic interval is readily established once the following identity is proved:

Aij(u, u
′) = Eia(u

′)

∫ u

u′

du′′
[

C−1(u′′)
]ab

Ejb(u) . (5.22)

The proof is as follows. Notice that the zweibein Eia(u) is a particular solution of the

geodesic equation (5.10). A(u, u′) also solves this equation and so it follows that

E
⊤
Ȧ − Ė

⊤
A = K , (5.23)

where K is a constant matrix. Using the fact that Ω = ĖE
−1 is a symmetric matrix

allows us to write

∂u

(

E
−1

A
)

= E
−1
(

E
−1
)⊤

K = C
−1

K , (5.24)

where C(u) is the non-trivial part of the metric in Rosen coordinates (4.17). In-

tegrating this equation and imposing the boundary conditions A(u′, u′) = 0 and

∂uA(u, u′)|u=u′ = 1, gives

A(u, u′) = E(u)

∫ u

u′

du′′ C−1(u′′)E(u′)⊤ . (5.25)

which in components is (5.22). Notice that the symmetry (5.13) is manifest. A similar con-

struction with the alternative boundary conditions determines B(u, u′) in the form (5.11).5

Finally, we relate these results to the optical scalars in the Raychoudhuri equations

which describe the geodesic flow. It is convenient to start from an alternative, but entirely

equivalent, description of geodesic deviation. In this approach, the evolution of the Jacobi

5Also notice that if we were to evaluate the vacuum polarization directly using the Brinkmann expression

for σ(x, x′) rather than the simpler Rosen form, (5.11) is essential in simplifying the transverse integrals

and ensuring that the elegant Rosen result (4.37) is reproduced.
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fields yi(u) is determined by requiring that their Lie derivative Lky
i vanishes along the

geodesic with tangent vector kµ, i.e.

Lky
i ≡ k · ∇yi − (∇jk

i)yj = 0 . (5.26)

This implies the parallel transport equation

∂uy
i = Ωi

jy
j (5.27)

where Ωij = ∇jki. Notice that since the geodesic tangent vector in Brinkmann coordinates

is kµ = (1, (1
2 Ω̇ + Ω2)ijy

iyj,Ωijy
j), this is consistent with the original definition Ωij =

ĖiaEj
a. It then follows from (5.9) that

∂u log
(

Bij(u, u
′) +Aik(u, u

′)Ωk
j(u

′)
)

= Ωij(u) , (5.28)

which is clearly consistent with (5.11).

The matrix Ωij is the fundamental object from which the optical scalars are defined.

We have6

Ωij(u) =
1

2
θ̂(u)δij + σ̂ij(u) + ω̂ij(u) , (5.29)

defining the expansion θ̂, the shear σ̂ij and the twist ω̂ij. The corresponding scalars are

σ̂2 = Ω(ij)Ω
ij − 1

2 θ̂
2 and ω̂2 = Ω[i,j]Ω

ij. The twist vanishes in all cases considered here, so

Ωij is symmetric. Eq.(5.28) therefore implies:

Bij(u, u
′) +Aik(u, u

′)Ωk
j(u

′) = exp

∫ u

u′

du′′
(

1

2
θ̂δij + σ̂ij

)

. (5.30)

Note that the optical scalars depend on the choice of boundary conditions imposed on

yi(u). A particularly relevant choice is the “geodesic spray” condition considered above.

In this case, (5.28) simplifies to

∂u log A = Ω(u) . (5.31)

Taking the trace gives the important identity

∂u log detA(u, u′) = θ̂(u, u′) , (5.32)

where we display the u′ dependence on the r.h.s. explicitly as a reminder of the choice of

boundary condition, just as in the notation ki(u, u′) in (5.21) for the tangent vector.

In general, if there are two points x(u) and x(u′) on a geodesic γ for which there exists

a family of geodesics infinitesimally close to γ which also pass through x(u) and x(u′), then

these are said to be conjugate points. As we now show, conjugate points play a crucial

rôle in determining the analyticity properties of the refractive index. For the plane wave,

conjugate points correspond to solutions of the geodesic equation with yi(u) = yi(u′) = 0.

It follows from the discussion above that this implies detA(u, u′) = 0. In turn, this implies

that at these points, the VVM determinant det∆(u, u′) has a singularity. This establishes a

direct link between the analyticity structure of the refractive index (4.41) and the geometry
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Figure 6: Conjugate points x(u) and x(u′) on the geodesic γ through which infinitesimal defor-

mations of γ (or finite deformations in the Penrose limit) also pass.

Figure 7: The expansion θ̂(u, u′) describes the rate-of-change of the proper area defined by the

spray of null geodesics that pass through x(u′). The null energy condition implies that the expansion

monotonically decreases, except at conjugate points.

of conjugate points. Moreover, this geometry is entirely encoded in the geodesic deviation

matrix A(u, u′) or equivalently the VVM matrix ∆(u, u′).

A particularly important observation is that the existence of conjugate points is generic

(see e.g. [27]). This follows from the Raychoudhuri equations:

∂uθ̂ = −1

2
θ̂2 − σ̂ijσ̂

ij −Ruu

∂uσ̂ij = −θ̂σ̂ij − Cuiuj .
(5.33)

As a consequence of the null energy condition, Ruu ≥ 0, (5.33) implies the inequality

∂uθ̂(u, u
′) +

1

2
θ̂(u, u′)2 ≤ 0 . (5.34)

The significance of this is that ∂uθ̂(u, u
′) ≤ 0 so that θ̂(u, u′) generally decreases monotoni-

cally with u. (Of course, this is violated at the singularities where θ̂(u, u′) jumps from −∞
to ∞.) If at some point u = ũ, θ̂(ũ, u′) is negative, say −|λ|, then inevitably θ̂(u, u′) → −∞
at some finite u ≤ ũ+ 2/|λ|. The proof is simple. In order to attempt to avoid the singu-

larity |∂uθ̂(u, u
′)| should be as small as possible. In other words, we should saturate the

inequality (5.34), with the solution

θ̂(u, u′) =
2

u− ũ− 2/|λ| . (5.35)

6Here, we follow the conventions of Wald [27]. There are therefore some factors of 2 different from the

Chandrasekhar [37] conventions used in refs. [16, 17].
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Figure 8: The generic behaviour of the expansion θ̂(u, u′) along a null geodesic. The singularities

occur when x(u) and x(u′) are conjugate points.

Hence, there must be a conjugate point at some x(u) with u ≤ ũ+ 2/|λ|. At the conjugate

point, θ̂(u, u′) jumps discontinuously from −∞ to ∞ and then begins its descent again.

Notice that as u→ ∞ the expansion must go asymptotically to zero.

Finally, notice that by diagonalizing the shear tensor and combining the two Raychoud-

huri equations (5.33), we can characterize the null congruences by whether the geodesics

focus in both transverse directions (specified by the eigenvectors of σij) or have one direc-

tion focusing and one defocusing. (These were labelled as Type I and Type II respectively

in refs. [16, 17].) As shown above, the null energy condition prohibits the existence of

a third case with defocusing/defocusing. The focusing directions give rise to conjugate

points and corresponding singularities of the VVM determinant ∆(u, u′) on the real axis;

defocusing directions, on the other hand, are associated with singularities on the imaginary

axis, as illustrated in the example of general symmetric plane waves in section 7.2.

6. Analyticity and causality

As noted at the end of section 4, the singularities in the VVM determinant induced by

the existence of conjugate points gives rise to a novel analytic structure for the refractive

index in the complex ω plane. This is a generic effect which will also affect more general

scattering amplitudes. As we shall see, it means that in curved spacetime some of the

conventional axioms and assumptions of S-matrix theory and dispersion relations need to

be re-evaluated, with far-reaching physical implications.

6.1 Analytic structure of the refractive index

Returning now to the expression (4.42) for the refractive index in terms of the VVM matrix,

n(u;ω) = 1− α

2πω

∫ 1

0
dξ ξ(1 − ξ)F

(

m2

2ωξ(1 − ξ)

)

, (6.1)

it is clear that the t-integral defining F(u; z) in (4.43) has branch-point singularities on the

real t-axis whenever x(u) and x(u− t) are conjugate points. After integration over t, these
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singularities give rise to cuts in F(u; z) from 0 to ∞ in the complex z-plane. The refractive

index n(u;ω) is therefore a multi-valued function of ω with branch points at 0 and ∞.

The presence of branch-point singularities on the real t-axis means we have to give a

prescription for the contour of the t-integration in (4.43). For z real and positive, as in

section 4, we define:

F+(u; z)
∣

∣

∣

z∈R>0
=

∫ ∞−iǫ

0

dt

t2
ie−izt

[

1− ∆
(

u, u− t
)

√

det∆
(

u, u− t
)

]

, (6.2)

with the contour as illustrated in figure 5. With this choice, the t-integral can be performed

by rotating to the negative imaginary t-axis where the integral is convergent due to the

damping of e−izt as t → −i∞ for Re z > 0. Moreover, since the integral is over Re t > 0,

it receives support only from that part of the null geodesic to the past of x(u), i.e. from

∆(u, u− t) with Re t > 0. Intuitively this is what one would expect for in a causal theory.

Similarly, for z real and negative we should define

F−(u; z)
∣

∣

∣

z∈R<0
=

∫ −∞+iǫ

0

dt

t2
ie−izt

[

1− ∆
(

u, u− t
)

√

det∆
(

u, u− t
)

]

. (6.3)

This contour avoids the singularities on the negative t-axis, while rotation of the contour

towards the positive imaginary t-axis leads to a convergent integral for Re z < 0. This

time, the t-integral has support only from the section of the null geodesic in the future of

x(u). Again, this is as required for causality with Reω < 0 and is consistent with the usual

flat-space limit.

The next step is to specify the physical sheet for the multi-valued function F(u; z)

defining the refractive index. First, we choose to run the branch cuts in the complex z-

plane from 0 to ±∞ just above (below) the positive (negative) real axis respectively.7 The

physical F(u; z) is defined as the analytic continuation of F+(u; z) from real, positive z into

the lower-half plane and of F−(u; z) from real, negative z into the upper-half plane. That is,

F(u; z) =

{

F+(u; z) − π < arg z ≤ 0 ,

F−(u; z) 0 < arg z ≤ π .
(6.4)

This implies the corresponding analytic structure for the refractive index n(u;ω) itself

in the complex ω-plane, illustrated in figure 9. Since z is essentially the inverse of ω, the

upper-half plane in z maps into the lower-half plane in ω and vice-versa. The physical

refractive index is therefore given by the analytic continuation of n+(u;ω)—defined using

F+(u; z)—into the upper-half plane and of n−(u;ω) into the lower-half plane

There may also be further singularities in F+(u; z) or F−(u; z) individually (e.g. we

will find examples in the next section where F+(u; z) has poles on z ∈ R < 0) but these

lie off the physical sheet defining F(u; z) itself.

7This applies also to the cuts arising from any branch-point singularities occurring off the real t-axis, for

example the singularities on the imaginary t-axis in the general symmetric plane wave example discussed

in section 7.
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Figure 9: The physical sheet for n(u;ω) defined by analytic continuation from the real positive

axis into the upper-half plane and from the real negative axis into the lower-half plane. Since z

is inversely related to ω the upper-half of the ω plane maps to the lower-half of the z plane, and

vice-versa.

Figure 10: Wrapping the contours C− and C+ defining F−(u;ω) and F+(u;ω) around the branch

point singularities on the positive real t-axis. The integral with the resulting contour C gives the

discontinuity of F(u;ω) across the cut along the positive real ω-axis.

Across the cuts, there will be a discontinuity in F(u; z) or n(u;ω) and we define Disc

F(u; z) and Disc n(u;ω) as the discontinuities across the appropriate cuts taken in the

anti-clockwise sense. These discontinuities play an important rôle in dispersion relations.

In the simplest case, where there are no singularities in the complex t-plane apart from

those on the real axis (as realized in the conformally flat symmetric plane wave example

discussed in section 7.1), we can evaluate Disc F(u; z) across the cut along z ∈ R > 0

by rotating the contour defining F−(u; z) to wrap around the positive t-axis as shown in

figure 10. That is,

– 24 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
1

Disc F(u; z)
∣

∣

z∈R>0
= F−(u; z) − F+(u; z)

=

∫ −∞+iǫ

0

dt

t2
ie−izt

[

. . .
]

−
∫ ∞−iǫ

0

dt

t2
ie−izt

[

. . .
]

= −
∫

C

dt

t2
ie−izt

[

1 − ∆
(

u, u− t
)

√

det∆
(

u, u− t
)

]

.

(6.5)

Indeed, for the conformally symmetric plane wave background, the singularities on the real

t-axis are actually poles, so Disc F(u; z) can be evaluated from the contour C simply as

the sum of the residues. This example is worked out explicitly in section 7.1.

An important special case arises when the background is translation invariant with

respect to the coordinate u along the null geodesic. Since the VVM matrix is symmetric

in its two arguments, we then have

∆(u, u− t) = ∆(u− t, u) = ∆(u, u+ t) , (6.6)

so the integrand
[

. . .
]

in F(z) (which is of course then independent of u) is an even function

of t. In turn, this implies

F−(z) = − F+(−z) (translation invariance) (6.7)

which is a result of special significance in the analysis of dispersion relations.

6.2 Kramers-Kronig dispersion relation

The Kramers-Kronig dispersion relation is an identity satisfied by the refractive index, or

vacuum polarization, in QED.8 Its derivation depends critically on the analyticity proper-

ties of the refractive index and shows in a simple context the sort of changes to conventional

S-matrix relations and dispersion relations which will occur due to the novel analytic struc-

ture of amplitudes in curved spacetime.

To derive the Kramers-Kronig relation, we integrate n(u;ω)/ω around the contour

shown in figure 11. As explained in the following section, causality imposes two fundamen-

tal properties of the refractive index: (i) n(u;ω) is analytic in the upper-half ω-plane, and

(ii) n(u;ω) is bounded at infinity.9 Assuming these properties, we have

∫

C∞

dω

ω
n(u;ω) +

∫

C0

dω

ω
n(u;ω) + P

∫ ∞

−∞

dω

ω
n(u;ω) = 0 . (6.8)

which implies

n(u; 0) − n(u;∞) =
1

iπ
P
∫ ∞

−∞

dω

ω
n(u;ω) . (6.9)

Provided the causality properties are satisfied, the Kramers-Kronig relation in the

form (6.9) is always valid. Note that the principal part integral is over a contour lying

8Contrary to some recent claims in the literature [11], the Kramers-Kronig relation is equally valid

in relativistic quantum field theory as it is in non-relativistic settings; for example the proof in QFT is

presented in Weinberg’s textbook [15].
9Notice that this is weaker than the condition that n(u;ω) → 1 as |ω| → ∞.

– 25 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
1

Figure 11: The contour in the complex ω-plane used in the derivation of the Kramers-Kronig

relation for n(u;ω). The second figure shows the equivalent contour in the complex z-plane relevant

for F(u; z).

just above the real axis, so can be written as

P
∫ ∞

−∞

dω

ω
n(ω) =

∫ 0

−∞

dω

ω
n(u;ω + iǫ) +

∫ ∞

0

dω

ω
n(u;ω + iǫ)

=

∫ ∞

0

dω

ω

(

n(u;ω + iǫ) − n(u;−ω + iǫ)
)

.

(6.10)

Now, in the conventional flat-spacetime derivation [15], translation invariance implies

that n(ω) is an even function of ω. This implies that n(−ω + iǫ) = n(ω − iǫ), so the

r.h.s. of (6.10) becomes the discontinuity of n(ω) on the positive real ω-axis:

n(0) − n(∞) =
1

iπ

∫ ∞

0

dω

ω
Disc n(ω) (translation invariance) . (6.11)

Finally, in flat-spacetime QED, the refractive index satisfies the property of real analyticity,

n(ω∗) = n(ω)∗. This is a special case of the basic S-matrix property of hermitian analyt-

icity [38] which is satisfied by more general scattering amplitudes. With this assumption,

we can replace the discontinuity in (6.11) by the imaginary part of the refractive index,

since for real ω it implies n(ω − iǫ) = n(ω + iǫ)∗, leaving

n(0) − n(∞) =
2

π

∫ ∞

0

dω

ω
Im n(ω) (real analyticity) . (6.12)

This is the standard form of the Kramers-Kronig relation. Since the optical theorem

relates the imaginary part of forward scattering amplitudes to the total cross section,

the r.h.s. of (6.12) is positive under conventional QFT conditions. This would imply

n(0) > n(∞), consistent with a subluminal low-frequency phase velocity, which is the

usual dispersive situation.10

In curved spacetime, however, the assumptions leading to the second (6.11) and

third (6.12) forms of the Kramers-Kronig relation need to be reassessed. We still maintain

10For examples in atomic physics where the system exhibits gain and Imn(ω) is negative, see ref. [8]. See

also sections 6.4 and 7.
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the causality conditions, that n(u;ω) is analytic in the upper-half ω-plane and bounded at

infinity, so the primitive identity (6.9) is always satisfied.

Now, in our case, because of the cuts along the real ω-axis and the definition of the

physical sheet, the r.h.s. of (6.10) actually involves the function n+(u;ω). Then, if we are

in a special case where we have translation invariance along the geodesic, so that the VVM

matrix ∆(u, u′) is a function only of (u− u′), we have from (6.7) that

n−(ω) = n+(−ω) , (6.13)

taking into account the extra 1/ω factor in front of the integral (6.1) for the refractive

index in terms of F(z). The r.h.s. of (6.10) therefore involves

n+(ω + iǫ) − n+(−ω + iǫ) = n+(ω + iǫ) − n−(ω − iǫ)

= Disc n(ω) .
(6.14)

So translation invariance in u would imply that the second form (6.11) of the Kramers-

Kronig relation holds even in curved spacetime.

However, as we shall see in a number of examples, it appears that real analyticity

of n(u;ω) is lost for QED in curved spacetime. This stems from the need to define the

physical sheet for n(u;ω) as in figure 9 in terms of both n+(u;ω) and n−(u;ω), with the

cuts in the complex ω-plane originating directly from the geometry of geodesic deviation

and the VVM matrix. So the third form (6.12) of the Kramers-Kronig relation does not

hold in curved spacetime. Notice, however, that this does not imply there is anything

wrong with causality or microcausality.

6.3 Causality and the refractive index

In this section, we show that the two conditions on the refractive index assumed in the

derivation of the Kramers-Kronig relation, viz.

(i) n(u;ω) is analytic in the upper-half ω-plane, and

(ii) n(u;ω) → 1 for large |ω|, are necessary conditions for causality.

The first is a consequence of requiring that the refractive index at x(u) only depends

on influences in the past light cone of x(u); the second imposes the condition that the

wavefront velocity (which has been identified in previous work as the relevant speed of

light for causality) is c.

There are many ways to see how the connection between analyticity and causality

arises, both at the level of the refractive index and more generally in the construction of

Green functions obeying micro-causality. The essential technical feature is the theorem

that the Fourier transform f̃(z) of a function f(t) which vanishes for t > 0 is analytic in

the upper-half complex z-plane. This argument naturally appears in some guise in all the

discussions linking causality with analyticity.

An illuminating illustration is to consider the propagation of a sharp-fronted wave

packet. Consider the one-loop corrected modes (2.10). Suppose that in the distant past,
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Figure 12: A sharp-fronted wavepacket propagating with respect to the light cone.

u → −∞, we build a sharp-fronted wave-packet propagating in the u direction, by taking

a Fourier Transform of the modes (2.10):11

Aµ =

∫ ∞

−∞

dωZ(ω)εµ(j)(u)e
−iω(V −ϑij(u;ω)) , (6.15)

with

ϑ(u;ω) =
1

2

∫ u

−∞

du′
[

n(u′;ω) − 1
]

(6.16)

In the limit, u→ −∞, the refractive index must approach 1 and so the condition that (6.15)

be sharp-fronted, that is vanishing for V < 0, is that Z(ω) is analytic in the upper-half

plane. This is because when V < 0 we can deform the integration contour in (6.15) from

the real axis into the upper-half plane and out to the semi-circle at infinity on which

the integrand vanishes.12 This contour deformation argument manifests the usual link

between causality and analyticity. It follows that at finite u, the wavepacket will remain

sharp-fronted and vanishing outside the light cone V < 0 provided that (i) the refractive

index n(u;ω), is an analytic function of ω in the upper-half plane; and (ii) n(u;ω) → 1

as |ω| → ∞. If both these conditions are satisfied then the sharp-fronted disturbance will

propagate causally.13

To see how these conditions are realized here, consider the expression (4.42),(4.43)

for the refractive index in terms of an integral over t of a function of the VVM matrix

∆(u, u− t). Causality requires this to depend only on the part of the geodesic to the past

of x(u), which is guaranteed by the integral being only over t > 0. But since F+(u; z) then

has the form of a Fourier transform of a function which vanishes for t < 0, it follows from

the above theorem that F+(u; z) is analytic in the lower-half z-plane. In turn, this implies

analyticity of n(u;ω) in the upper-half ω-plane.

11Implicitly we have been assuming that in the distant past the curvature is turned off and the refractive

index is asymptotically 1. Later we will be able to remove this restriction when we discuss Green functions.
12In order for the wavepacket to be properly defined in the presence of the one-loop correction, the

integration contour must lie just above the real axis to avoid any non-analyticities of n(u;ω) on the real axis.
13Notice that causality might be respected if n(u;ω) approached a constant for large |ω| but with respect

to a modified light cone given by V = ϑ(u;∞). This would rely on the space being suitably “causally

stable” [25, 10, 6]. The examples that we find do not have this property and so we will not pursue this idea.
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For the second condition (ii), note that the wavefront velocity is the high-frequency

limit of the phase velocity.14 For large |ω|, we have

n(u;ω) = 1− α

12πω
F(u; 0) + · · · (6.17)

So a sufficient condition for the second requirement to be satisfied is that the integral

F(u; 0) is finite.15 In particular, this requires that the integral

F+(u; 0) = i

∫ ∞−iǫ

0

dt

t2

[

1− ∆
(

u, u− t
)

√

det∆
(

u, u− t
)

]

, (6.18)

is convergent. This is actually guaranteed by the fact that, as we have already mentioned,

implicitly we are assuming that the space becomes flat in the infinite past and future in

order that the one-loop corrected photon modes be defined consistently in the whole of

spacetime. In that case, for large t, ∆(u, u− t) → 1 as t→ ∞.16

6.4 Dispersion and Imn(ω)

In general, the refractive index is a complex quantity. While the real part determines the

local phase velocity at a point, the imaginary part describes dispersion. To see this we

note that the probability density of the photon wavefunction, with the one-loop correction

include, is

A(i)µ(u)Aµ
(j)(u)

† = g(u)−1/2 exp
[

−ω
∫ u

−∞

du′ Imnij(u
′;ω)

]

. (6.19)

The pre-factor here is just the volume effect one would expect in curved spacetime. The

exponential term, on the contrary, determines the dispersive effect of spacetime. In general,

we would expect that the eigenvalues of the imaginary part of the refractive index would be

≥ 0 so that spacetime would act like an ordinary dispersive medium with the total number

of photons being depleted as they propagate by conversion into real e+e− pairs.

However, when we look at some of the examples that we have considered, in partic-

ular the Ricci-flat symmetric plane wave whose refractive index is plotted numerically in

figure 15 and the weak gravitational wave in figure 16, we see that the imaginary part of

the refractive index can be negative. Indeed, in the gravitational wave example it oscil-

lates sinusoidally with the frequency of the background wave. Apparently, in these cases,

spacetime acts as an amplifying medium for photon propagation.

In many ways, this effect is similar to that studied in some atomic physics examples

in [8]. It was shown there that for certain three-state Λ-systems interacting with coupling

and probe lasers, the refractive index can be arranged to be of the form

n(ω) = 1 − A

ω − ω0 + iγ
, (6.20)

14This is proved in ref. [12] (see also [6]) for a very general class of wave equation; this proof may not,

however, be sufficiently general to cover the full vacuum-polarization induced wave equation (4.2).
15It might have been possible for F(u; z) to have a simple pole at z = 0, in which case the high frequency

phase velocity is finite but different from c. But as we have already mentioned this does not occur.
16We can also discuss spaces which do not become flat in the infinite past and future. In that case, the

relevant problem to consider is an initial value problem and this inevitably involves the Green functions, a

topic that we turn to in section 9.
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where ω0 is a characteristic frequency of the coupled laser-atom system. In the usual dis-

persive case, we would have A > 0 so that Ren(0) > 1 and the low-frequency propagation

is subluminal while Imn(ω) > 0. However, in Raman gain systems we can arrange to have

A < 0, resulting in a superluminal Ren(0) < 1 with Imn(ω) < 0. The negative imaginary

part indicates that the probe laser is amplified (taking energy from the coupling laser),

with the system acting as an optical medium exhibiting gain.

For our purposes, the important point is that in this model, n(ω) is characterized by

a simple pole at ω = ω0 − iγ. This must be in the negative imaginary half-plane to be

consistent with causality. It then follows that the existence of Imn(ω) < 0 is necessarily

linked to superluminal low-frequency propagation. In the examples below, we also find

that the occurrence of an imaginary part for the refractive index is correlated with the

occurrence of singularities, in this case branch points, in n(ω) off the real axis but in the

causally-safe half-plane. In turn, the location of these singularities is intimately related to

the location of singularities of the VVM matrix in the complex u-plane, with polarizations

exhibiting Imn(ω) < 0 and a superluminal Ren(0) < 1 corresponding to the diverging

direction of the null geodesic congruence. However, we should be cautious about over-

interpreting our results in this way, since the actual QFT results for the refractive index

are significantly more complicated than (6.20).

It is also important to recognize that this amplification occurs for photons of high

frequency ω2R
m4 ∼ 1, i.e. ω ∼ 1

λc

L
λc

where L is the curvature scale. It is not a long-range,

infra-red effect with photon wavelengths comparable to the curvature, ω ∼ 1
L . Rather, the

effect seems to be a kind of emission of photons induced by the interaction of the incident

wave with quantum loops in the curved spacetime background. However, the details of

this mechanism remain to be fully understood.

7. Example 1: symmetric plane waves

To illustrate these general results, we now consider some simple examples. The simplest

case is when the background has a Penrose limit which is a symmetric plane wave. In

this case, the matrix functions Ruiuj(u) are independent of u. They can immediately be

diagonalized, Ruiuj = −σ2
i δij , with the σi constant. The metric in Brinkmann coordinates

therefore takes the form

ds2 = −2du dv − σ2
i y

i yi du2 + dyi dyi . (7.1)

The curvatures are Ruu =
∑

i σ
2
i and Ruiui = σ2

i .

The VVM matrix can be determined by solving the Jacobi equations (5.8) and (5.10).

This gives yi(u) = c1 cos(σiu+ c2) and implementing the appropriate boundary condition

in (5.10) selects

Aij(u, u
′) = δij

sinσi(u− u′)

σi
. (7.2)

Hence

∆ij(u, u
′) = δij

σi(u− u′)

sinσi(u− u′)
. (7.3)
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The matrix of refractive indices is independent of u and diagonal with elements given by

eqs. (6.1)–(6.4) with

F+(z) = δij

∫ ∞−iǫ

0

dt

t2
ie−izt



1 − σit

sinσit

2
∏

j=1

√

σjt

sinσjt



 , (7.4)

and similarly for F−(z).17 Notice that in general the integrand has branch-point singulari-

ties on the real t axis since at least one of the σj is real: these are the conjugate point singu-

larities. When one of the σj is imaginary there are also branch points on the imaginary axis.

7.1 The conformally flat symmetric plane wave

Consider first the conformally flat symmetric plane wave, with σ1 = σ2 = σ. In this case,

both polarizations propagate with the same phase velocity and refractive index — there is

no birefringence. We can therefore set F(z) = 1F(z). Eq.(7.4) simplifies to

F+(z) =

∫ ∞−iǫ

0

dt

t2
ie−izt

[

1 −
( σt

sinσt

)2
]

. (7.5)

The integral can be evaluated by first rotating the contour to the negative imaginary

axis and then by direct evaluation, giving a closed-form expression in terms of di-gamma

functions:

F+(z) = −z log
z

2σ
+ z ψ(1 +

z

2σ
) − σ . (7.6)

As expected, this is a branched function due to the presence of the logarithm.

The corresponding function F−(z) defined as

F−(z) =

∫ −∞+iǫ

0

dt

t2
ie−izt

[

1 −
( σt

sinσt

)2
]

. (7.7)

is given explicitly by

F−(z) = −z log(− z

2σ
) + z ψ(1 − z

2σ
) + σ . (7.8)

It satisfies

F−(z) = −F+(−z) , (7.9)

by virtue of the translation invariance of the symmetric plane wave metric, which guarantees

that the VVM matrix (7.3) is a function only of (u−u′) and the factor
[

. . .
]

in the integrand

of (7.5) and (7.7) is an even function of t.

17Notice that this result is slightly different from that quoted in [16, 17]. The difference is because of the

way the overall position of the loop was fixed. In [16, 17] the centre of the loops were fixed by hand to be

at the origin. In the present work we have not needed to fix the overall position of the loops since this is

done automatically because the loops are pinned at x(0) to go through x, the origin in Rosen coordinates.

It turns out that there is a non-trivial Jacobian between these prescriptions.
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Figure 13: The physical sheet for F(z) showing the branch cuts and the simple poles which lie on

other sheets accessed by moving through the cuts in the direction of the arrows.

The physical sheet is given by the cut z-plane with the physical F(z) defined as the

analytic continuation of F+(z) into the lower-half plane and of F−(z) into the upper-half

plane, that is (see figure 13):

F(z) =

{

F+(z) = −z log z
2σ + z ψ(1 + z

2σ ) − σ , − π < arg z ≤ 0 ,

F−(z) = −z log(− z
2σ ) + z ψ(1 − z

2σ ) + σ , 0 < arg z ≤ π .
(7.10)

Before considering the discontinuities and the Kramers-Kronig relation, notice that in

addition to the cuts from the logarithm, F+(z) also has simple poles on the negative real

axis at z = −2pσ, p = 1, 2, . . . from the di-gamma functions.18 Similarly, F−(z) has poles

on the positive real z-axis. These poles are not on the physical sheet, as defined above,

so do not directly affect the physical refractive index. Nevertheless, they encode useful

information about the functions F+(z) and F−(z) and provide an alternative method of

computing the physical discontinuities.

The full analytic structure of F+(z) can be understood as follows. First, introduce a

cut-off δ to regularize the lower limit of the t integral. It is then useful to consider the

integral as the sum of two pieces. The first term is

F (1)
+ (δ, z) =

∫ ∞−iǫ

δ

dt

t2
ie−izt

=
e−iδz

δ
+ iz Ei(−iδz)

=
i

δ
− z

2
log(−z2δ2) − z(γE − 1) .

(7.11)

18ψ(x) has simple poles at 0,−1,−2, . . . with residue −1. The di-gamma function also satisfies the

following identities, to be used later:

ψ(1 + z) = ψ(z) +
1

z
, ψ(1 − z) = ψ(z) + π cotπz .
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where the limit δ → 0 was taken in the last line. What is interesting is that this term

accounts for the branched nature of F+(z); indeed as z → ze2πi, the exponential integral

function has a logarithmic branch cut and so the discontinuity of (7.11) is −2πz. The

second term,

F (2)
+ (δ, z) = −iσ2

∫ ∞−iǫ

δ
dt

e−izt

sin2 σt
, (7.12)

only has simple poles which can be manifested by expanding the denominator in powers

of e−2iσt:

F (2)
+ (δ, z) = 4iσ2

∫ ∞−iǫ

δ
dt

∞
∑

p=1

pe−i(z+2pσ)t . (7.13)

Performing the t integral

F (2)
+ (δ, z) = 4σ2e−izδ

∞
∑

p=1

p

z + 2pσ
e−2ipσδ

= − 2σe−izδ

e2iσδ − 1
− 2σze−i(z+2σ)δ

z + 2σ
2F1

(

1, 1 +
z

2σ
; 2 +

z

2σ
, e−2iσδ

)

= − i

δ
+
z

2
log

(

− 4δ2

σ2

)

+ z(γE − 1) − σ + z ψ

(

1 +
z

2σ

)

.

(7.14)

Summing the two contributions (7.11) and (7.14), we see that the divergent terms cancel

to leave the finite piece (7.6).

Returning to the refractive index, we now perform the integral over ξ in (6.1) and define

the physical n(ω) on the physical sheet described in figure 9 as the analytic function found

by continuing n+(ω) into the upper-half plane and n−(ω) into the lower-half plane, that is

n(ω) =

{

n+(ω) , 0 ≤ arg ω < π ,

n−(ω) , − π ≤ arg ω < 0 .
(7.15)

The translation invariance property F−(z) = −F+(−z) implies

n−(ω) = n+(−ω) . (7.16)

Also, note that Imn(ω) = 0 for real ω in this example. With this definition, we also see

that n(ω) is not a real analytic function, i.e. n(ω∗) 6= n(ω)∗. This is because of the

difference in the functions n+(ω) and n−(ω), and reflects the need for the cuts in the z and

ω-planes in the definition of F(z) and n(ω). This shows very clearly how the geometry, in

the form of conjugate points, implies an analytic structure for the refractive index which

fails to satisfy the usual S-matrix and dispersion relation assumptions.

Since the symmetric plane wave metric exhibits translation invariance in u, the second

form of the Kramers-Kronig relation (6.11) should hold in this example. We now check

this. First, we need the discontinuity Disc F(z) on the positive real z-axis. Using standard
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di-gamma function identities (see footnote 19), we find19

Disc F(z) = F−(z) − F+(z)

= πz cot
πz

2σ
− iπz

=
2iπz

eiπz/σ − 1
.

(7.17)

This can also be found by using the contour in (6.5), see figure 11, to evaluate Disc F(z)

as the sum of the residues of the poles on the real t-axis in the integrand of (7.5). These

are double poles at nπ/σ, n ∈ Z 6= 0. The fact that the singularities are poles rather

than branch points is due to the fact that for the conformally flat symmetric plane wave

conjugate points are simultaneously conjugate for both polarizations. The discontinuity in

F(z) associated to the series of double poles at t = nπ/σ is then given by (6.5) as

Disc F(z) = − 2πi
∑

n

Resnπ/σ
ie−izt

t2

[

1 −
( σt

sinσt

)2
]

= 2πiz
∑

n

e−iπnz/σ

=
2iπz

eiπz/σ − 1
.

(7.18)

reproducing the result above.

Finally, substituting back into the refractive index formula, we can evaluate the

Kramers-Kronig relation:

n(0) − n(∞) =
1

iπ

∫ ∞

0

dω

ω
Disc n(ω − iǫ)

=
α

2iπ2

∫ ∞

0

dω

ω2

∫ 1

0
dξ ξ(1 − ξ)DiscF

(

m2

2ωξ(1 − ξ)
+ iǫ

)

=
α

iπ2m2

∫ 1

0
dξ [ξ(1 − ξ)]2

∫ ∞

0
dz Disc F(z + iǫ)

=
α

iπ2m2
· 1

30
·
∫ ∞+iǫ

0
dz

2iπz

eiπz/σ − 1

=
α

iπ2m2
· 1

30
·
[

− i

∫ ∞

0
dz

2πz

eπz/σ − 1
− 8πiσ2

∞
∑

n=1

n

]

=
ασ2

90πm2
.

(7.19)

where the sum over the residues in the second to last line is evaluated as ζ(−1) = − 1
12 .

The iǫ prescriptions here are crucial because DiscF(z) has a set of simple poles and the

19As a consistency check, we can verify that the sum of the discontinuities on the positive and negative

axes, viz.
2iπz

eiπz/σ − 1
+

2iπz

e−iπz/σ − 1
= −2iπz ,

which reproduces the discontinuity of the logarithmic cuts in F(z).
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Figure 14: The refractive index n(ω) − 1 for the conformally flat symmetric plane wave in units

of ασ2/(πm2), as a function of logωσ/m2.

integration contour must be defined appropriately. The required definition follows from a

close examination of (6.14). This shows that “Disc n(ω)” is in fact n+(ω+ iǫ)−n−(ω− iǫ)
and picks up not just the discontinuity across the cut itself but also a contribution from

the hidden poles on the unphysical sheet for Reω > 0.

We can check this explicitly. For small ω, we have from (3.10) that

nij(0) = δij +
α

360πm2

(

Ruuδij − 2Ruiuj

)

=
ασ2

90πm2
δij . (7.20)

For large |ω|, the refractive index is determined by expanding (7.5) for small z. In partic-

ular, in the limit as |ω| → ∞, we have (6.17)

n(ω) =

[

1 − α

12πω
F(0) + · · ·

]

, (7.21)

plus less singular terms, where

F(0) = i

∫ ∞−iǫ

0

dt

t2

[

δij −
(

σt

sinσt

)2
]

= −
∫ ∞

0

dt

t2

[

δij −
(

σt

sinhσt

)2
]

= −σ . (7.22)

where we have rotated the contour t → −it. So we verify that the high-frequency limit

of the refractive index is indeed δij as expected, corresponding to a wavefront velocities

equal to c, and the Kramers-Kronig identity holds (despite the absence of a non-vanishing

Imn(ω)) by virtue of the contribution from Disc n(ω) across the cut in the complex ω-plane.

The complete frequency dependence of the refractive index can be found by numerical

evaluation of (7.5) and the result is shown in figure 14. Notice that because of the sign

difference in the one-loop coefficients in (3.10) and (3.9) for scalars and spinors, the corre-

sponding result for spinor QED is the opposite of this, viz. a superluminal low-frequency

phase velocity falling monotonically to c in the high-frequency limit.
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Figure 15: (a) Reni(ω) − 1 and (b) Imni(ω) (i = 1 continuous, i = 2 dashed) in units of

ασ2/(πm2), as a function of logωσ/m2 for the Ricci flat symmetric plane wave.

7.2 The general symmetric plane wave

We now extend this analysis to the general symmetric plane wave (7.4). Writing Fij(z) =

Fj(z)δij , we have

F1(z) =

∫ ∞−iǫ

0
dt ie−izt

[

1

t2
− σ

3/2
1 σ

1/2
2

sin3/2 σ1t sin
1/2 σ2t

]

(7.23)

and similarly for F2(z) with σ1 ↔ σ2. With no loss of generality we can assume σ1 is real,

while σ2 can be real or imaginary with σ1 > |σ2| (and we shall assume that σ1 is positive

and argσ2 is either 0 or π
2 ). To define a physical sheet, we continue F+j(z) ≡ Fj(z) into

the lower-half plane (including the positive real axis) and glue it to F−j(z) = −F+j(−z)
in the upper-half plane, just as in the conformally flat example.

To demonstrate the new physics arising here, we numerically calculate the refractive

index for the Ricci flat symmetric plane wave metric, σ1 = σ and σ2 = iσ. This displays

gravitational birefringence, in that the two polarizations move with different refractive

indices. Moreover, in this case, the refractive index also develops an imaginary part, which

would not be seen in the low-frequency expansion based on the effective action. The real

and imaginary parts of the refractive indices are plotted in figure 15. Remarkably, and

unlike the usual case of dispersive scattering where Imn(ω) > 0, we find that here the

imaginary part of the refractive index is negative.

Although we do not have a complete expression for the refractive index in this case

in terms of elementary functions, we can still get a very accurate approximation using

analytic techniques. First of all, we rotate the contour by taking t → −it:

F(z) = −
∫ ∞+iǫ

0
dt e−zt

[

1

t2
− σ2

sins σt sinh2−s σt

]

, (7.24)

where s = 1
2 or 3

2 depending on the polarization. The integration contour lies on top of the

branch points at t = nπ/σ, n = 1, 2, . . .. Notice that the integrand is real for 0 ≤ t ≤ π,

2π ≤ t ≤ 3π, etc., and imaginary for π ≤ t ≤ 2π, 3π ≤ t ≤ 4π, etc. Since the integrand

is falling off exponentially like e−(z+(2−s)σ)t we can approximate the imaginary part by
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expanding around the first branch point t = π/σ; first, taking s = 1
2 :

ImF1(z) ≃ 23/2σ3/2

∫ ∞

π/σ
dt

e−(z+3σ/2)t

(t− π/σ)1/2

= (2e−π)3/2√πσ3/2 e−zπ/σ

√

z + 3σ/2
,

(7.25)

and then for s = 3
2 :20

ImF2(z) ≃ −21/2σ1/2

∫ ∞

π/σ
dt

e−(z+σ/2)t

(t− π/σ)3/2

= 2(2e−π)
1
2
√
πσ1/2e−zπ/σ

√

z + σ/2 .

(7.26)

From these expressions, we can get a further approximation of the refractive index

itself valid for low frequency, by evaluating the ξ integral around the saddle-point of the

exponential factor e−zπ/σ = exp−πm2/(2ωσξ(1 − ξ)) which occurs at ξ = 1
2 . This gives

the leading low frequency behaviour as

Imn1(ω) = − ασ2

32πm2
(2e−π)3/2√πe−2πm2/(ωσ) + · · · (7.27)

and

Imn2(ω) = − ασ

8πω
(2e−π)1/2√πe−2πm2/(ωσ) + · · · , (7.28)

which accurately reproduces the numerical evaluation in figure 15.

To try and understand the origin of this unusual dispersive behaviour, we can follow

the same logic as for the conformally flat example to deduce the analytic structure of

F+j(z), since ultimately the sign of Im n(ω) is determined by the location of branch points

on the unphysical sheet of n(ω). The idea is to introduce a cut-off δ on the lower limit

of the integral and consider the contribution from the two terms in the integrand. The

contribution (7.11) remains the same, whereas the second contribution is now

F (2)
1 (δ, z) = −

∫ ∞−iǫ

0
dt ie−izt σ

3/2
1 σ

1/2
2

sin3/2 σ1t sin
1/2 σ2t

. (7.29)

We can expand the integrand in terms of e−2iσ1t and e−2iσ∗
2 t, which is a convergent expan-

sion along the integration contour. (Notice that this is the expansion which is consistent

with our choice of argσ2 to be either 0 or π
2 .) Performing the t integral on the terms in

the double expansion gives

F (2)
1 (δ, z) = 4σ

3/2
1 σ

1/2
2 e−izδ

∞
∑

m,n=0

(

3
2

m

)(

1
2

n

)

e−i(2m+ 3
2
)σ1δ−i(2n+ 1

2
)σ∗

2δ

z + (2m+ 3
2)σ1 + (2n + 1

2)σ∗2
. (7.30)

20The integral here appears to be singular at the lower limit. However, in reality the contour jumps over

the branch point and this regularizes the integral in a way which is equivalent to taking
R

∞

0
dt e−t/t3/2 =

Γ(−1/2) = −2
√
π.
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While we cannot sum this in closed form, we know that apart from a singular term which

cancels that in F+j(z) (7.11), it is a holomorphic function with simple poles at

z = −
(

2m+
3

2

)

σ1 −
(

2n+
1

2

)

σ∗2 , m, n ∈ Z ≥ 0 . (7.31)

In particular, in the case when σ2 is imaginary there are poles in the upper-half plane. A

similar story holds for the other polarization state.

To conclude, F+j(z) has a branch point at z = 0 coming from the z log z term in (7.11)

along with a set of simple poles which lie in the region Re z < 0, Im z ≥ 0. In particular

since they lie in the upper-half of the z plane they give rise to branch points in the lower-half

of the ω plane (on an unphysical sheet) and are therefore in the causally safe region.

The situation for n2(ω), where the polarization lies in the direction of diverging

geodesics in the null congruence, is therefore quite similar to the simple single-pole re-

fractive index model discussed in section 6.4 in that we find a low-frequency superluminal

phase velocity together with branch points in the negative imaginary half ω-plane. The

resulting Imn2(ω) < 0 implies an amplification of photon propagation through this back-

ground spacetime, centred on a characteristic frequency of order ω2R/m4 ∼ 1. In contrast,

n1(ω), where the polarization lies in the direction of converging geodesics, shows similar

behaviour to the conformally flat example, with a subluminal phase velocity and only a

very small, though still negative, imaginary part Imn1(ω) < 0.

8. Example 2: weak gravitational wave

We now consider an example of a time-dependent background, the weak gravitational wave,

which displays gravitational birefringence and dispersion with both positive and negative

imaginary parts for the refractive index.

The spacetime metric for a weak gravitational wave takes the following form in Rosen

coordinates:

ds2 = −2du dV + (1 + ǫ cos νu)dY 1 dY 1 +
(

1 − ǫ cos νu
)

dY 2 dY 2 . (8.1)

Here, and in the following, ǫ is small and we work to linear order. The transformation to

Brinkmann coordinates is achieved via the zweibein

Ea
j(u) = δi

a

(

1 − (−1)j
ǫ

2
cos νu

)

, (8.2)

to give

ds2 = −2du dv + (−1)j
ǫν2

2
cos νu yjyj du2 + dyj dyj . (8.3)

The equation for the Jacobi fields is

d2y(±)(u)

du2
= ∓ǫν

2

2
cos νu yj(u) , (8.4)
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with ± corresponding to j = 1 and j = 2, respectively. This can easily be solved pertur-

batively in ǫ, with solution to linear order

y(±)(u) = c1 + uc2 ±
ǫ

2
(c1 + uc2) cos νu∓ ǫc2

ν
sin νu . (8.5)

Solving the Jacobi equation (5.6) with the boundary condition (5.7), we now find the

eigenvalues of A

A(±)(u, u′) =u− u′

± ǫ(u− u′)

2

(

cos νu+ cos νu′
)

∓ ǫ

ν

(

sin νu− sin νu′
)

,
(8.6)

which determines the eigenvalues of the Van-Vleck Morette matrix:

∆(±)(u, u′) = 1 ∓ ǫ

2
(cos νu+ cos νu′) ± ǫ

ν(u− u′)
(sin νu− sin νu′) . (8.7)

The refractive index is given by (4.42) with F(u; z) = diagF (±)(u; z), where

F (±)(u; z) = ± ǫ

∫ ∞−iǫ

0

dt

t2
ie−izt

×
[

1

2
(cos νu+ cos ν(u− t)) − 1

νt
(sin νu− sin ν(u− t))

]

= ∓ ǫ
[

f1(z) cos νu+ f2(z) sin νu
]

,

(8.8)

where

f1(z) =
z

4ν

[

2ν(1 + log z) + (z − ν) log(z − ν) − (z + ν) log(z + ν)
]

,

f2(z) =
i

4ν

[

ν2 + 2z2 log z + z(ν − z) log(z − ν) − z(z + ν) log(z + ν)
]

,
(8.9)

The functions fj(z) have branch points at 0, ∞ and z = ±ν and this means that

nj(u;ω) will have branch points at 0 ±∞ and ±2m2/ν. In particular, the branch points at

±2m2/ν are points of non-analyticity of the refractive index. This non-analyticity manifests

itself by the fact that Im f1(z) and Re f2(z) are zero for z ∈ R > ν, while for z ∈ R < ν,

Im f1(z) = Re f2(z) =
πz(ν − z)

4ν
. (8.10)

It is then a simple matter to extract the low frequency expansion of the refractive

index:

n(±)(u;ω) =1 ± αǫν2

m2π

[

1

360
+

1

6300

(ων

m2

)2
+ + · · ·

]

cos νu

∓ i
αǫν2

m2π

[

1

840

(ων

m2

)

+
1

10395

(ων

m2

)3
+ · · ·

]

sin νu ,

(8.11)

while at high frequencies,

nj(u;ω) = 1 ± i
αǫν

6πω
sin νu+ · · · (8.12)
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Figure 16: (a) Ren(±) − 1 and (b) Imn(±) for u = 0.2, m = ν = 1 plotted as a function of logω

in units of ǫα for both polarizations. The point of non-analyticity at ω = 2 is quite clear. (Note

that the fact that the polarizations do not quite give mirror images is an artifact of the numerical

approximation.

The full form of the frequency dependence of the real and imaginary parts of the

refractive index is plotted numerically in figure 16, evaluated at a fixed point on the photon

trajectory. For the first polarization, this shows a conventional dispersion for Ren(ω), with

a single characteristic frequency ω2R/m4 ∼ 1, together with the corresponding Imn(ω) >

0. Once more, however, the second polarization is superluminal at low frequencies and has

Imn(ω) < 0, indicating amplification rather than dispersive scattering. The roles of the

two polarizations of course change along the photon trajectory through the background

gravitational wave.

9. Green functions

So far, we have been considering the one-loop correction to photon modes that come in from

past infinity and propagate out to future infinity. As we have already pointed out, this is,

strictly-speaking, only consistent if the space becomes flat in those limits, otherwise the one-

loop correction to the mode becomes large undermining perturbation theory. A local way

to investigate causality involves specifying some initial data on a Cauchy surface and seeing

whether it propagates causally. This avoids the problem of having modes come in from the

infinite past. Such initial value problems lead to an investigation of the Green functions.

For a general spacetime, it is not possible to construct the complete Green functions

due to the fact that we can only construct the modes in the eikonal limit ω ≫
√
R.

However, if we are interested in the one-loop correction to a Green function G(x, x′), in the

neighbourhood of the component of the light cone with V = V ′ = 0 and Y a = Y ′a = 0—

and this will teach us about the one-loop correction to the causal structure — then it is

consistent to replace the full metric by the Penrose limit of the null geodesic which goes

through (V = 0, Y a = 0). In this way, we need not work in the eikonal approximations

since the modes (2.2) are exact in a plane-wave spacetime. Once we have taken the

Penrose limit, then it is possible to calculate the one-loop correction to the Green functions

exactly. (See figure 17).

In order to construct the Green functions we need a complete set of on-shell modes.

The most immediate problem is that the general plane wave spacetime does not admit a
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Figure 17: The one-loop correction to the Green functions can be calculated for two points

x′ = (u′, 0, 0) and x = (u, V, Y a) for small V and Y a, so in the neighbourhood of the light cone,

since the full metric may be approximated by the Penrose limit as indicated.

set of Cauchy surfaces. However, we will follow [39] and use the null surfaces u = const.

to define the canonical structure, a choice which is sufficient for our purposes. We now

search for the complete set of on-shell modes with respect to the inner-product defined on

the ersatz Cauchy surfaces:

(

A,A′) =
1

i

∫

dV d2Y
√

det g(u)
(

A · ∂VA
′† −A′† · ∂VA

)

. (9.1)

The modes A(i)µ(x), with

A(i)u(x) = A(i)V (x) = 0 , A(i)a(x) = A(u)Eia(u)e
−iωV , (9.2)

that we constructed in section 3 are clearly on-shell, but are not the most general set of

modes. A complete set of gauge-fixed on-shell modes can be constructed by taking a more

general eikonal phase and polarization:

A(i)µ(x) = ε(i)µ(x) exp−i
[

ωV + paY
a + ψ(u)

]

, (9.3)

where the eikonal equation (2.4) determines

dψ(u)

du
=

1

2ω

[

C−1(u)
]ab
papb , (9.4)

implying, for later use,

ψ(u) − ψ(u′) =
u− u′

2ω

[

∆−1(u, u′)
]ab
papb . (9.5)

The gauge-fixed polarization vectors now pick up an additional component:

ε̂(i)a = Eia(u) , ε̂(i)u = −paEi
a(u)

ω
, (9.6)

while the scalar amplitude remains as in (4.31). Notice, in Brinkmann coordinates the

polarization vector is particularly simple with ε̂(i)j = δ(i)j and ε̂(i)u as above. The modes

are split into the positive/negative frequency on-shell modes as according to whether ω ≷ 0
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and we will define the 3-momentum ~p = (ω, pa). One easily finds that the inner-product

on the modes is
(

A(i)(~p), A(j)(~p
′)
)

= 2(2π)3ωδ(3)(~p − ~p′)δij (9.7)

All the various propagators can be constructed from these modes. We begin by con-

structing the Wightman functions21

G±
µν(x, x′) =

2
∑

j=1

∫

ω≷0

d3~p

2(2π)3ω
A(j)µ(~p;x)

(

A(j)ν(~p;x′)
)†

(9.8)

where, as indicated, the integral over ω extends over 0 to ±∞ for G±, respectively. The

pa integrals are Gaussian and hence easily performed:
∫

d2p ε̂jµ(u)ε̂jν(u′) exp

[

− ipa(Y − Y ′)a − i(u− u′)

2ω

[

∆−1(u, u′)
]ab
papb

]

= 2πω
̟µν(x, x′)

√

det∆ab(u, u′)

u− u′
exp

[

iω

2(u− u′)
∆ab(u, u

′)(Y − Y ′)a(Y − Y ′)b
]

,

(9.9)

where ̟µν(x, x′) has the following non-zero components in Brinkmann coordinates:

̟ij(x, x
′) = δij , ̟uu(x, x′) =

2Tr∆(u, u′)

ω(u− u′)
− (y − y′)i(∆2)ij(y − y′)j

(u− u′)2
, (9.10)

We therefore find

G±
µν(x, x′) =

1

2(2π)2
̟µν(x, x

′)
√

det∆(u, u′)

u− u′

×
∫ ±∞

0
dωexp

[

iω(V −V ′)+
iω

2(u−u′)∆ab(u, u
′)(Y −Y ′)a(Y − Y ′)b

]

=
1

2(2π)2
̟µν(x, x

′)
√

det∆(u, u′)

u− u′

∫ ±∞

0
dω exp

[

iωσ(x, x′)

u− u′

]

,

(9.11)

with

σ(x, x′) = −(u− u′)(V − V ′) +
1

2
∆ab(u, u

′)(Y − Y ′)a(Y − Y ′)b . (9.12)

The Feynman propagator iGF µν(x, x
′) = 〈0|T

(

Aµ(x)Aν(x′)
)

|0〉, is given by

iGF µν(x, x′) = θ(u− u′)G+
µν(x, x′) + θ(u′ − u)G−

µν(x, x′) . (9.13)

However, in the present context we are more interested in the causal Green functions. In

particular, the Pauli-Jordan, or Schwinger, function

iGµν(x, x′) = 〈0|[Aµ(x), Aν(x′)]|0〉 (9.14)

is

iGµν(x, x′) = G+
µν(x, x′) −G−

µν(x, x′)

=
1

2(2π)2
̟µν(x, x′)

√

det∆(u, u′)

u− u′

∫ ∞

−∞

dω exp

[

iωσ(x, x′)

u− u′

]

=
1

4π
̟µν(x, x′)

√

det∆(u, u′)δ
(

σ(x, x′)
)

.

(9.15)

21We use the notation of Birrel and Davies [40].
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From this the retarded and advanced Green functions may be extracted via

GR µν(x, x′) = −θ(u− u′)Gµν(x, x′) , GA µν(x, x′) = θ(u′ − u)Gµν(x, x′) , (9.16)

The causal properties of the Pauli-Jordan function are manifest in the last line of (9.15).

Gµν(x, x′) has support only if x lies on the forward or backward light cone of x′. In

particular, for GR µν(x, x′) the support is on the forward light cone and for GA µν(x, x′) it

is on the backward light cone. This is precisely what is to be expected for the causality

properties of the Green functions of massless quanta.

The one-loop correction to the Feynman propagator is given by the usual expression

G1-loop
F µν (x, x′) = −

∫

d4x̃ d4x̃′
(

g(ũ)g(ũ′)
)1/2

GF µ
σ(x, x̃)Π1-loop

σρ (x̃, x̃′)GF
ρ
µ(x̃′, x′) . (9.17)

As explained above, the causal properties of a theory are not manifested directly in the

Feynman propagator, which receives contributions both inside and outside the light cone.

In order to address the causal structure we need to calculate the one-loop correction to

the Pauli-Jordan function, or retarded and advanced Green functions. However, these can

extracted from (9.17) using (9.13) and (9.15).

The key result is a generalization of the calculation of section 4 with the more general

on-shell modes (9.3):
∫

dṼ d2Ỹ dṼ ′ d2Ỹ ′
√

g(ũ)g(ũ′)Aµ
(i)(~p; x̃)

†Π1-loop
µν (x̃, x̃′)Aν

(j)(~p
′, x̃′)

=
2αωi

π
(2π)3δ(3)(~p− ~p′)

∆ij(ũ, ũ
′)
√

det∆(ũ, ũ′)

(ũ− ũ′)2
θ

(

ũ− ũ′

ω

)

×
∫ 1

0
dξ ξ(1 − ξ) exp

[

− im2(ũ− ũ′)

2ωξ(1 − ξ)

]

+ · · · ,

(9.18)

where the ellipsis indicates additional terms that do not depend on the curvature, i.e. are

needed to have the correct flat space limit.

The strategy for calculating (9.17) is to write the tree-level Feynman propagators in

terms of G± using (9.13). Then we write G± in terms of the on-shell modes, as in (9.8).

Once this has been done we can use (9.18). The key point is that (9.18) conserves the

“momentum” ~p and so the contributions schematically of the form G+ΠG− and G−ΠG+

vanish, leaving the non-vanishing contributions G±ΠG± which are immediately identified

as the one-loop corrections to G±. Notice that the step functions that are present in (9.13)

mean that ũ and ũ′ are constrained to be u ≥ ũ ≥ ũ′ ≥ u′ and u ≤ ũ ≤ ũ′ ≤ u′, respectively,

for G1-loop±. It is then convenient to change variables from (ũ, ũ′) to (ũ, t), where t = ũ−ũ′.
Putting all this together, we have

G1-loop±
µν (x, x′) =

2iα

π

∫

ω≷0

d3p

2(2π)3ω

∫ u

u′

dũ

∫ u−u′

0

dt

t2

∫ 1

0
dξ ξ(1 − ξ)

× ∆ij(ũ, ũ− t)
√

det∆(ũ, ũ− t)

× exp

[

− im2t

2ωξ(1 − ξ)

]

A(i)µ(~p;x)A(j)ν(~p;x′)† + · · · .

(9.19)
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which are initially valid for u ≷ u′, respectively, but which can be extended to all u and u′

by analytic continuation.

The pa integrals in (9.19) are identical to (9.9) and so the former becomes

G1-loop±
ij (x, x′) =

iα

(2π)2π

√

det∆(u, u′)

u− u′

∫ u

u′

dũ

∫ u−u′

0

dt

t2

∫ 1

0
dξ ξ(1 − ξ)

× ∆ij(ũ, ũ− t)
√

det∆(ũ, ũ− t)

×
∫ ±∞

0
dω exp

[

− im2t

2ωξ(1 − ξ)
+
iωσ(x, x′)

u− u′

]

+ · · · .

(9.20)

where we have just displayed the components with spacetime indices in the two-dimensional

polarization subspace.

As happened at tree level, the Pauli-Jordan function (9.15) is given by (9.20) by

extending the ω integral from −∞ to +∞:

G1-loop
ij (x, x′) =

iα

(2π)2π

√

det∆(u, u′)

u− u′

∫ u

u′

dũ

∫ u−u′

0

dt

t2

∫ 1

0
dξ ξ(1 − ξ)

× ∆ij(ũ, ũ− t)
√

det∆(ũ, ũ− t)

×
∫ ∞

−∞

dω exp

[

− im2t

2ωξ(1 − ξ)
+
iωσ(x, x′)

u− u′

]

+ · · · .

(9.21)

Notice that in the limit u′ → −∞ with fixed u, the expression can be written in terms

of the refractive index. In particular, for x = (u, V, 0, 0) and x′ = (u′, 0, 0, 0) in the limit

u′ → −∞, the Pauli-Jordan function (or, since u > u′, the retarded propagator) is

G1-loop
R ij (x;x′) ∼

∫ u

−∞

dũ

∫ ∞

−∞

dω nij(ũ;ω)e−iωV . (9.22)

Since n(u;ω) in analytic in the upper-half plane, the retarded propagator vanishes when

V < 0, i.e. outside the light cone. This confirms that even in the presence of the novel

dispersion relations and superluminal phase velocities described here, causality is main-

tained with advanced, retarded and Pauli-Jordan Green functions displaying the necessary

light-cone support.

A remarkable feature of (9.21) is that we can rewrite it in a manifestly causal form in

terms of the Pauli-Jordan function G(m2;x, x′) of a massive scalar particle (see eq.(4.4)):

G1-loop
ij (x, x′) =

2α

π

∫ u

u′

dũ

∫ u−u′

0

dt

t2

∫ 1

0
dξ ξ(1 − ξ)

×∆ij(ũ, ũ−t)
√

det∆(ũ, ũ−t)G
(

m2t

2ξ(1−ξ)(u−u′) ;x, x
′

)

+· · · .
(9.23)

As in previous formulae, the ellipsis represent terms that do not depend on the curva-

ture. This last expression makes the causal structure completely manifest. In particular,

G(m2;x, x′) has support only inside, or on, the light cone and so at the one-loop level the

commutator of two photon fields receives contributions from inside the light cone. However,

causality is maintained because the one-loop correction G1-loop
ij (x, x′) still vanishes outside

the light cone.
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10. Summary and conclusions

In this paper, we have analyzed the effect of vacuum polarization in QED on the propa-

gation of photons through a curved spacetime background. This problem is of potentially

fundamental significance because of the discovery that quantum loop effects can induce a

superluminal phase velocity, raising the question of how, or whether, this can be reconciled

with causality. We have resolved this issue through an explicit computation of the full

frequency dependence of the refractive index for QED in curved spacetime, showing that

the wavefront velocity, which is the speed of light relevant for causality, is indeed c. This

is, however, only possible because a number of generally assumed properties of QFT and

S-matrix theory, including the familiar form of the Kramers-Kronig dispersion relation, do

not hold in curved spacetime due to a novel analytic structure of the Green functions and

scattering amplitudes.

The key insight which makes this analysis possible for general spacetimes is the

realization, inspired by the worldline formalism of QFT, that to leading order in the

curvature, the quantum contributions to photon propagation are determined by the

geometry of geodesic deviation, i.e. by fluctuations around the null geodesic describing the

photon’s classical trajectory. This geometry is encoded in the Penrose limit of the original

spacetime, simplifying the problem of photon propagation in general backgrounds to that

of their plane wave limits.

This allowed us to derive a compact expression for the complete refractive index n(ω)

of a curved spacetime entirely in terms of the Van Vleck-Morette matrix for its Penrose

limit. In this form, the novel analytic structure we have discovered becomes manifest. It is

related to the occurrence of singularities in the VVM matrix corresponding to the existence

of conjugate points in the null geodesic congruence describing photon propagation. The

existence of conjugate points is a generic property of geodesic congruences, related to

the Raychoudhuri equations and enforced by the null energy condition. This geometrical

origin shows that the type of unconventional analytic structure which we find here for n(ω),

notably the loss of real analyticity, will also occur in more general scattering amplitudes in

QFT in curved spacetime.

The analytic structure of the refractive index and its implications for causality were

described in detail in section 6. The VVM singularities mean it is necessary to define n(ω)

on a physical sheet, pasting together analytic functions on opposite sides of cuts running

along the real ω-axis. This construction banishes dangerous branch-point singularities to

the unphysical sheets, leaving the physical refractive index with the crucial property of

analyticity in the upper-half complex ω-plane required for causality. We also investigated

causality at the level of the Green functions themselves, demonstrating explicitly how the

retarded, advanced and commutator functions have support on the relevant parts of the

fundamental light cone.

The general theory was illustrated in two examples — the symmetric plane wave and

the weak gravitational wave background. As well as demonstrating explicitly how the

analytic structure of the refractive index arises and how the Kramers-Kronig dispersion

relation is realized in a way compatible with causality, these examples introduced a further
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surprise, viz. the occurrence of negative imaginary parts for the refractive index. Such

behaviour is generally associated with the amplification of a light wave as it passes through

an optical medium exhibiting gain, rather than the usual dispersive scattering associated

with the production of e+e− pairs. It appears that in this case quantum loop effects in the

curved spacetime background are responsible for the emission of photons.

In addition to clarifying the mechanism responsible for inducing Imn(ω) < 0 and

understanding the relation to the optical theorem, there are many other directions in which

this work can be extended. An immediate task is to generalize the fundamental result (4.41)

for the refractive index to spinor QED and other QFTs. This requires some further technical

developments, but the discussion of analyticity is unlikely to change significantly. It is also

interesting to extend these results to cosmological and black hole spacetimes and study the

effect on photon propagation of horizons and singularities. The phase velocity derived from

the low-energy effective action already displays special simplifications at a horizon [5, 41],

while the Penrose limit of black hole spacetimes near the singularity exhibits an interesting

universality [42] that will be inherited by the refractive index.

Finally, it is important to extend this analysis from photon propagation and two-

point Green functions to higher-point scattering amplitudes. In view of the geometrical

origin of the novel analyticity structure discovered here, it seems inevitable that many

of the conventional analyticity properties of scattering amplitudes, which underlie all the

usual relations of S-matrix theory, will also be radically changed in curved spacetime. In

particular, a study of the analytic structure of Planck energy scattering may well have

far-reaching implications not only for QFT in curved spacetime but also for string theory

and perhaps even quantum gravity itself.
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